• Title/Summary/Keyword: protease purification

Search Result 227, Processing Time 0.029 seconds

Study on Meat Tenderizer -Part II. Tenderizing ability of Enzyme from Asp. oryzae- (Meat Tenderizer 제조에 관한 연구 -제2보 Asp. oryzae 생산 protease의 연육효과-)

  • Lee, Jung-Hee;Kim, Kun-Wha;Yu, Ju-Hyun;Yang, Ryung
    • Korean Journal of Food Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.229-237
    • /
    • 1975
  • An attempt was made to utilize the enzyme produced by Asp. oryzae as meat tenderizer. The production, purification, and various properties of proteinase produced by Asp. oryzae were investigated. Results obtained are as follow; 1. A strain which had the highest proteolytic activity was selected among 9 Aspergillus species. 2. Culture medium consisted of wheat bran 10g, 2% glucose, 0.03% urea and 0.1% $MgSO_4$ (pH 6.5). Mold was incubated at $30^{\circ}C$ for 3 days. 3. Enzyme extract from culture medium were fractionated with ammonium sulfate and purified by Sephadex G-75 column chromatography. 4. When pH of reaction mixture was controlled, maximal activity of proteinase by Asp. oryzae was obtained at pH 3, pH 6.6, $8.4{\sim}8.5$ and pH 10.0 to 10.5. Those results were interpreted to show that enzyme consists of acid proteinase, neutral proteinase and alkaline proteinase. Enzyme was stable at pH 6 to 10. 5. Opt. temperature for proteinase activity was $50^{\circ}C$, but enzyme was stable up to $40^{\circ}C$. 6. The proteinase was inhibited by $Ag^+$. It was also inhibited by EDTA. 7. When myofibrillar proteins were treated by proteinase from Asp. oryzae, ATPase activities of myofibrillar proteins changed remarkably. Accordingly, it was concluded that proteinase produced by Asp. oryzae were able to be used as meat tenderizer.

  • PDF

Purification and Characterization of an Anticoagulant from Corn Silk (옥발에서 항응고물질의 정제와 특성)

  • Choi, Sang-Kyu;Choi, Hye-Seon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.8
    • /
    • pp.1262-1267
    • /
    • 2004
  • An anticoagulant was purified from corn silk which has been used in Oriental Medicine. The anticoagulant from corn silk has a molecular mass of 135 kDa, and purified by 24 folds with a recovery of 11%. It was not sensitive to heat and protease treatment. However, periodate oxidation of the anticoagulant resulted in loss of activity significantly, implying that a carbohydrate was responsible for an anticoagulant activity. Galactose, glucose, mannose, fucose, glucosamine, and galactosamine were detected after acid hydrolysis by thin layer chromatography (TLC) and Bio-LC. It was confirmed that anticoagulant had OH and NH bonds by IR, supporting that the anticoagulant is composed of neutrosugar and aminosugar. Its anticoagulating activity was measured by delay in thrombin time (TT) and prothrombin time (PT) without affecting clotting by snake venom and delay in activated partial thromboplastin time (APTT). TT was more sensitive than PT, and was delayed two and three times at the concentration of 60 and 88 nM, respectively. The anticoagulating activity was reduced in the thrombin-induced clotting assay using purified fibrinogen according to the increase of fibrinogen concentration with the apparent Ki value of 23 nM.

Purification and Biochemical Characteristics of Fibrinolytic Enzyme from Streptomyces corcohrussi JK-20 (Streptomyces corcohrussi JK-20 유래 혈전용해효소의 순수분리 및 이의 생화학적 특성 규명)

  • Kim, You-Jung;Park, Jeong-Uck;Seo, Min-Jeong;Kim, Min-Jeong;Lee, Hye-Hyeon;Jin, Se-Hun;Kang, Byoung-Won;Choi, Yung-Hyun;Jeong, Yong-Kee
    • Journal of Life Science
    • /
    • v.20 no.6
    • /
    • pp.838-844
    • /
    • 2010
  • A fibrinolytic enzyme of Streptomyces corcohrussi from soil sediment was purified by chromatography using DEAE-Sephadex A-50 and Sephadex G-50. The analysis of SDS-polyacrylamide gel suggested that the purified enzyme is a homogeneous protein and the molecular mass is approximately 34 kDa. The purified enzyme showed activity of 0.8 U/ml in a plasminogen-rich fibrin plate, while its activity in a plasminogen-free fibrin plate was only 0.36 U/ml. These results suggested that the purified enzyme acts as a plasminogen activator. The fibrinolytic activity of the enzyme under the supplementation of protease inhibitors, $\varepsilon$-ACA, t-AMCHA and mercuric chloride in the enzyme reaction was less than 24%, indicating that it could be modulated by the plasmin and/or fibrinogen inhibitors involved in the fibrinogen-to-fibrin converting process. As time passed, $Zn^{2+}$, a heavy metal ion, inhibited the activity to 34.1%. The optimum temperature of the purified enzyme was approximately $50^{\circ}C$ and over 92% of the enzyme activity was maintained between pH 5.0 and 8.0. Therefore, our results provide a potential fibrinolytic enzyme as a noble thrombolytic agent from S. corcohrussi.

Purification and Assay of Extracellular Autolysin from Moraxella sp. CK-l (Moraxella sp. CK-1의 세포외 Autolysin의 분리 정제 및 활성도 측정)

  • 오영상;이장현;한명수;윤문영
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.148-154
    • /
    • 2003
  • Moraxella sp. CK-l is known to inhibits the growth of Anabaena cylindrica, a cyanobacterium. It has been documented that the ability of this growth inhibition of Anabaena cylindrica was attributed to extracellular autolysin from Moraxella sp. CK-l. However, it remains to be elucidated identification and characterization of autolysin have yet been elucidated. In this study, we tried to purify and identify autolysin secreted from Moraxella sp. CK-l. Cells were grown in a complex liquid medium (BGC-11) and culture supernatants were collected, followed by ammonium sulfate fractionation. Fractions were further separated with anion exchange column, Mono-Q, in FPLC system and analyzed by SDS/PAGE. The fraction containing high autolysin activity showed a single distinct protein peak in anion column and molecular mass of about 17 kDa in SDS/PAGE. Nterminal amino acid sequencing of the protein was analyzed, of which result showed the homology with some proteases, including extracellular serine protease, Dichelobacter nodosus.

Cloning of a Novel vpr Gene Encoding a Minor Fibrinolytic Enzyme from Bacillus subtilis SJ4 and the Properties of Vpr

  • Yao, Zhuang;Meng, Yu;Le, Huong Giang;Lee, Se Jin;Jeon, Hye Sung;Yoo, Ji Yeon;Kim, Hyun-Jin;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1720-1728
    • /
    • 2020
  • We have previously characterized AprESJ4, the major fibrinolytic enzyme from Bacillus subtilis SJ4 (Yao et al., 2019). During that study, we observed a 68 kDa protein with fibrinolytic activity. In this study, we cloned the gene (vprSJ4) encoding the 68 kDa protein, a mature Vpr and minor protease secreted by Bacillus species. vprSJ4 encodes a preproenzyme consisting of 810 amino acids (aa) including signal sequence (28 aa) and prosequence (132 aa). The mature enzyme (650 aa) has a predicted molecular weight of 68,467.35. Unlike Vprs from other B. subtilis strains, VprSJ4 has 4 additional amino acids (DEFA) at the C-terminus. vprSJ4 was overexpressed in Escherichia coli. PreproVprSJ4 was localized in inclusion bodies, and subjected to in vitro renaturation and purification by an affinity column. SDS-PAGE and western blot showed that autoprocessing of preproVprSJ4 occurred and 68 kDa and smaller proteins were produced. The optimum pH and temperature of the recombinant VprSJ4 were pH 7.0 and 40℃, respectively. Kinetic parameters of recombinant VprSJ4 were measured by using an artificial substrate, N-succinyl-ala-ala-pro-phe-p-nitroanilide. Coexpression of vprSJ4 and aprESJ4 using pHY300PLK increased the fibrinolytic activity a further 117% when compared with aprESJ4 single expression using the same vector in B. subtilis WB600.

Purification and Isolation for Antihypertensive Peptides from Beef Heart and Spleen (쇠고기 부산물로부터 혈압 상승 억제 펩타이드 분리 및 정제)

  • Jang, S. H.;Jang, A.;Kim, K. J.;Cheon, Y. H.;Min, J. S.;Lee, S. O.;Lee, M.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.319-326
    • /
    • 2003
  • Angiotensin-I converting enzyme(ACE)inhibitor was isolated from beef by-products. The beef by- product hydrolysates prepared with various proteases were tested for the inhibitory effects against ACE. The proteases used were proteinase A from bakers yeast, protease type ⅩIII fungal and thermolysin. The maximum inhibitory effect was observed after hydrolysis for 12hrs(beef heart) and 24hrs(beef spleen), respectively. After gel filtration, IC50 value was 0.37mg/ml in beef heart and 1.84mg/ml in beef spleen. After RP-HPLC, the IC50 value of peak 1, peak 2, peak 3 and peak-4 were 0.28mg/ml, 0.26mg/ml, 0.25mg/ml and 0.35mg/ml, respectively. In the results of amino acid composition of peak 1, peak 2, peak 3 and peak 4, it was observed that peak 1 was consisted mainly of glycine and methionine, peak 2 was proline, cystine and methionine, peak 3 was proline and peak 4 was alanine, methionine and leucine. In conclusion, beef heart hydrolysate treated with thermolysin+ proteinase A was shown to have the highest inhibitory effect for 12hrs incubation at 37$^{\circ}C$.