Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.6.838

Purification and Biochemical Characteristics of Fibrinolytic Enzyme from Streptomyces corcohrussi JK-20  

Kim, You-Jung (Department of Biotechnology, Dong-A University)
Park, Jeong-Uck (Department of Biotechnology, Dong-A University)
Seo, Min-Jeong (Department of Medical Bioscience, Dong-A University)
Kim, Min-Jeong (Medi-Farm Industrialization Research Center)
Lee, Hye-Hyeon (Medi-Farm Industrialization Research Center)
Jin, Se-Hun (Department of Biotechnology, Dong-A University)
Kang, Byoung-Won (Department of Biotechnology, Dong-A University)
Choi, Yung-Hyun (Department of Biochemistry, College of Oriental Medicine, Dong-Eui University)
Jeong, Yong-Kee (Department of Biotechnology, Dong-A University)
Publication Information
Journal of Life Science / v.20, no.6, 2010 , pp. 838-844 More about this Journal
Abstract
A fibrinolytic enzyme of Streptomyces corcohrussi from soil sediment was purified by chromatography using DEAE-Sephadex A-50 and Sephadex G-50. The analysis of SDS-polyacrylamide gel suggested that the purified enzyme is a homogeneous protein and the molecular mass is approximately 34 kDa. The purified enzyme showed activity of 0.8 U/ml in a plasminogen-rich fibrin plate, while its activity in a plasminogen-free fibrin plate was only 0.36 U/ml. These results suggested that the purified enzyme acts as a plasminogen activator. The fibrinolytic activity of the enzyme under the supplementation of protease inhibitors, $\varepsilon$-ACA, t-AMCHA and mercuric chloride in the enzyme reaction was less than 24%, indicating that it could be modulated by the plasmin and/or fibrinogen inhibitors involved in the fibrinogen-to-fibrin converting process. As time passed, $Zn^{2+}$, a heavy metal ion, inhibited the activity to 34.1%. The optimum temperature of the purified enzyme was approximately $50^{\circ}C$ and over 92% of the enzyme activity was maintained between pH 5.0 and 8.0. Therefore, our results provide a potential fibrinolytic enzyme as a noble thrombolytic agent from S. corcohrussi.
Keywords
Fibrinolytic enzyme; plasmin inhibitor; plasminogen activator; Streptomyces corcohrussi;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Peng, Y., Q. Huang, R. H. Zhang, and Y. Z. Zhang. 2003. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp. Biochem. Physiol. B 134, 45-52.   DOI
2 Smith, E. L., R. J. Delange, W. H. Evans, M. Landon, and F. S. Markland. 1968. Subtilisin Carlsberg. V. The complete sequence; comparison with subtilisin BPN'; evolutionary relationships. J. Biol. Chem. 243, 2184-2191.
3 Sumi, H., H. Hamada, H. Tsushima, H. Mihara, and H. Muraki. 1987. A novel fibrinolytic enzyme (Nattokinase) in the vegetable cheese natto: a typical and popular soybean food in the Japanese diet. Experimentia 43, 1110-1111.   DOI
4 Sumi, H., N. Nakajima, and C. Yatagai. 1995. A unique strong fibrinolytic enzyme (Katsuwokinase) in skipjack “Shiokara”, a Japanese traditional fermented food. Comp. Biochem. Physiol. 112, 543-547.   DOI
5 Turpie, A. G., B. S. Chin, and G. Y. Lip. 2002. Venous thromboembolism: pathophysiology, clinical features, and prevention. BMJ 325, 887-890.   DOI
6 Vasantha, N., L. D. Thompson, C. Rhodes, C. Banner, J. Nagle, and D. Filpula. 1984. Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J. Bacteriol. 159, 811-819.
7 Wong, A. H. and Y. Mine. 2004. A novel fibrinolytic enzyme in fermented shrimp paste, a traditional Asian fermented seasoning. J. Agric. Food Chem. 52, 980-986.   DOI
8 Kim, W., K. Choi, Y. Kim, H. Park, J. Choi, Y. Lee, H. Oh, I. Kwon, and S. Lee. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl. Environ. Microbiol. 62, 2482-2488.
9 Kim, J. H. and Y. S. Kim. 1999. A fibrinolytic metalloprotease from the fruiting bodies of an edible mushroom, Armillariella mellea. Biosci. Biotechnol. Biochem. 63, 2130-2136.   DOI
10 Kim, H. K., G. T. Kim, D. K. Kim, W. A. Chio, S. H. Park, Y. K. Jeong, and I. S. Kong. 1997. Purification and characterization of a novel fibrinolytic enzyme from Bacillus sp. KA38 originated from fermented fish. J. Ferment. Bioeng. 84, 307-312.   DOI
11 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.   DOI
12 Lee, J., S. Park, W. A. Choi, K. H. Lee, Y. K. Jeong, I. S. Kong, and S. Park. 1999. Production of a fibrinolytic enzyme in bioreactor culture by Bacillus subtilis BK-17. J. Microbiol. Biotechnol. 9, 443-449.   과학기술학회마을
13 Medved, L. V., D. A. Solovjov, and K. C. Ingham. 1966. Domain structure, stability and interactions in streptokinase. Eur. J. Biochem. 239, 333-339.   DOI
14 Mihara, H., H. Sumi, T. Yoneta, H. Mizumoto, R. Ikeda, M. Seiki, and M. Maruyama. 1991. A novel fibrinolytic enzyme extracted from the earthworm Lumbricus rubellus. Jpn. J. Physiol. 41, 461-472.   DOI
15 Nakamura, T., Y. Yamagata, and E. Ichishima. 1992. Nucleotide sequence of the subtilisin NAT gene, aprN of Bacillus subtilis (natto). Biosci. Biotechnol. Biochem. 56, 1869-1871.   DOI
16 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.   DOI   ScienceOn
17 Park, S. S., S. L. Wong, L. F. Wang, and R. H. Doi. 1989. Bacillus subtilis subtilisin gene (aprE) is expressed from a sigma A (sigma 43) promoter in vitro and in vivo. J. Bacteriol. 171, 2657-2665.
18 Bode, C., M. S. Runge, and R. W. Smalling. 1996. The future of thrombolysis in the treatment of acute myocardial infarction. Eur. Heart J. 17, 55-60.   DOI   ScienceOn
19 Bono, F., P. Savi, A. Tuong, M. Maftouh, J. M. Pereillo, J. Capdevielle, J. C. Guillemot, J. P. Maffrand, and J. M. Herbert. 1996. Purification and characterization of a novel protease from culture filtrates of a Streptomyces sp. FEMS Microbiol. Lett. 141, 213-220.   DOI
20 Chitte, R. R. and S. Dey. 2000. Potent fibrinolytic enzyme from a thermophilic Streptomyces megasporus strain SD5. Lett. Appl. Microbiol. 31, 405-410.   DOI
21 Jang, J. S., D. O. Kang, M. J. Chun, and S. M. Byun. 1992. Molecular cloning of a subtilisin J gene from Bacillus stearothermophilus and its expression in Bacillus subtilis. Biochem. Biophys. Res. Commun. 184, 277-282.   DOI
22 Jeong, Y. K., J. U. Park, H. Baek, S. H. Park, and I. S. Kong. 2001. Purification and biochemical characterization of a fibrinolytic enzyme from Bacillus subtilis BK-17. World J. Microbiol. Biotechnol. 17, 89-92.   DOI
23 Jeong, Y. K., J. H. Kim, S. W. Gal, J. E. Kim, S. S. Park, K. T. Chung, Y. H. Kim, B. W. Kim, and W. H. Joo. 2004. Molecular cloning and characterization of the gene encoding a fibrinolytic enzyme from Bacillus subtilis strain A1. World J. Microbiol. Biotechnol. 20, 711-717.   DOI
24 Blann, A. D., M. J. Landray, and G. Y. Lip. 2002. ABC of antithrombotic therapy: an overview of antithrombotic therapy. BMJ 25, 762-765.
25 Jeong Y. K., W. S. Yang, K. H. Kim, K. T. Chung, W. H. Joo, J. H. Kim, and J. U. Park. 2004. Purification of a fibrinolytic enzyme (myulchikinase) from pickled anchovy and its cytotoxicity to the tumor cell lines. Biotechnol. Lett. 26, 393-397.   DOI
26 Arai, K., J. Mimuro, S. Madoiwa, M. Matsuda, T. Sako, and Y. Sakata. 1995. Effect of staphylokinase concentration of plasminogen activation. Biochim. Biophys. Acta 1245, 69-75.   DOI   ScienceOn
27 Astrup, T. and S. Müllertz. 1952. The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40, 346-351.   DOI