• Title/Summary/Keyword: prostheses and Implants

Search Result 223, Processing Time 0.019 seconds

Fatigue fracture of different dental implant system under cyclic loading (반복하중에 따른 수종 임플란트의 피로파절에 관한 연구)

  • Park, Won-Ju;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.424-434
    • /
    • 2009
  • Statement of problem: Problems such as loosening and fractures of retained screws and fracture of implant fixture have been frequently reported in implant prosthesis. Purpose: Implant has weak mechanical properties against lateral loading compared to vertical occlusal loading, and therefore, stress analysis of implant fixture depending on its material and geometric features is needed. Material and methods: Total 28 of external hexed implants were divided into 7 of 4 groups; Group A (3i, FULL $OSSEOTITE^{(R)}$Implant), Group B (Nobelbiocare, $Br{\aa}nemark$ $System^{(R)}$Mk III Groovy RP), Group C (Neobiotec, $SinusQuick^{TM}$ EB), Group D (Osstem, US-II). The type III gold alloy prostheses were fabricated using adequate UCLA gold abutments. Fixture, abutment screw, and abutment were connected and cross-sectioned vertically. Hardness test was conducted using MXT-$\alpha$. For fatigue fracture test, with MTS 810, the specimens were loaded to the extent of 60-600 N until fracture occurred. The fracture pattern of abutment screw and fixture was observed under scanning electron microscope. A comparative study of stress distribution and fracture area of abutment screw and fixture was carried out through finite element analysis Results: 1. In Vicker's hardness test of abutment screw, the highest value was measured in group A and lowest value was measured in group D. 2. In all implant groups, implant fixture fractures occurred mainly at the 3-4th fixture thread valley where tensile stress was concentrated. When the fatigue life was compared, significant difference was found between the group A, B, C and D (P<.05). 3. The fracture patterns of group B and group D showed complex failure type, a fracture behavior including transverse and longitudinal failure patterns in both fixture and abutment screw. In Group A and C, however, the transverse failure of fixture was only observed. 4. The finite element analysis infers that a fatigue crack started at the fixture surface. Conclusion: The maximum tensile stress was found in the implant fixture at the level of cortical bone. The fatigue fracture occurred when the dead space of implant fixture coincides with jig surface where the maximum tensile stress was generated. To increase implant durability, prevention of surrounding bone resorption is important. However, if the bone resorption progresses to the level of dead space, the frequency of implant fracture would increase. Thus, proper management is needed.

Retention of CAD/CAM Metal Copings Cemented on Short Titanium Abutments with Different Cements (짧은 티타늄 지대주에 합착된 CAD/CAM 금속 코핑의 시멘트 종류에 따른 유지력 비교)

  • Kim, Hyo-Jung;Song, Eun-Young;Yoon, Ji-Young;Lee, Si-Ho;Lee, Yong-Keun;Oh, Nam-Sik
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.2
    • /
    • pp.119-126
    • /
    • 2012
  • State of problem: Cement-retained implant-supported prostheses are routinely used in dentistry. The use of high strength cements has become more popular with the increasing confidence in the stability of the implant-abutment screw connection and the high survival rates of osseointegrated implants. No clinical data on retention of metal copings using CAD/CAM. To evaluate retention of metal copings using CAD/CAM system bonded to short titanium abutment with four different cements and compare retentive strength of metal copings with sandblasting or without sandblasting before cementation. Forty titanium abutment blocks were fabricated and divided into 4 groups of 10 samples each. Forty metal copings with occlusal hole to allow for retention testing were fabricated using CAD/CAM technology. The four cements were Fujicem(Fuji, Japan), Maxcem Elite(Kerr, USA), Panavia F2.0(Kurarary, Japan) and Superbond C&B(Sunmedical, Japan). The copings were cemented on the titanium abutment according to manufacture's recommendation. All samples were stored for 24h at 37oC in 100% humidity and tested for retention using universal testing machine(Instron) at a crosshead speed of 1.0mm/min. Force at retentive failure was recorded in Newton. The mode of failure was also recorded. Means and standard deviations of loads at failure were analyzed using ANOVA and Paired t-test. Statistical significance was set at P<0.05. Panavia F2.0 provided significantly higher retentive strength than Fujicem, Maxcem Elite(P<0.05). Sandblasting significantly increased bond strength(P<0.05). The mode of failure was cement remaining principally on metal copings. Within the limitation of this study, Panavia F2.0 showed significantly stronger retentive strength than Fujicem, Maxcem Elite(p<0.05). The Ranking order of the cements to retain the copings was Panavia F2.0, Fujicem = Maxcem Elite. Sandblasting significantly increased bond strength(P<0.05). The retentive strength of metal copings on implant abutment were influenced by surface roughness and type of cements.

Effect of cyclic loading on axial displacement of abutment into implant with internal tapered connection: a pilot study (내측연결형 임플란트에 체결한 지대주의 수직침하에 대하여 반복하중이 미치는 영향)

  • Seol, Hyon-Woo;Heo, Seong-Joo;Koak, Jai-Young;Kim, Seong-Kyun;Han, Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.4
    • /
    • pp.315-322
    • /
    • 2013
  • Purpose: To evaluate the axial displacement of implant-abutment assembly after cyclic loading in internal tapered connection system. Materials and methods: External butt-joint connection implant and internal tapered connection implant were connected with three types of abutment for cement-retained prostheses, i.e. external type abutment (Ext group), internal tapered 1-piece abutment (Int-1 group), and internal tapered 2-piece abutment (Int-2 group). For each group, 7 implants and abutments were used. The implantabutments assemblies were clamped into the implant holder for vertical loads. A dynamic cyclic loading was applied for $150{\pm}10N$ at a frequency of 4 Hz. The amount of axial displacement of the abutment into the implant was calculated at each cycle of 0, 5, 10, 50, 100, 1,000, 5,000, and 10,000. A repeated measures analysis of variance (ANOVA) for the overall effect of cyclic loading and the pattern analysis by linear mixed model were used for statistical analysis. Differences at P<.05 were considered statistically significant. Results: The mean axial displacement after 10,000 cycles were $0.714{\pm}0.488{\mu}m$ in Ext group, $5.286{\pm}1.604{\mu}m$ in Int-1 group, and $11.429{\pm}1.902{\mu}m$ in Int-2 group. In the pattern analysis, Int-1 and Int-2 group showed continuous axial displacement at 10,000 cycles. There was no declining pattern of axial displacement in the Ext group. Conclusion: The pattern of linear mixed model in Ext group showed no axial displacement. There were continuous axial displacements in abutment-implant assemblies in the Int-1 and Int-2 group at 10,000 cycles. More axial displacement was found in Int-2 group than in Int-1 group.