• 제목/요약/키워드: proportions test

검색결과 342건 처리시간 0.024초

Bottom Ash를 잔 골재 대체재로 사용한 콘크리트의 내구성에 관한 실험적 연구 (An Experimental Study on the Durability of Concrete using the Bottom Ash as a part of Fine Aggregate)

  • 최세진;이성일;정용;김양배;오복진;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.19-24
    • /
    • 2003
  • Recently, the by-product of coal ash has been increased by increase of consumption of electric power. So in view of environmental aspect, it is important to secure a reclaimed land and treatment utility for coal ash. This is an experimental study to compare and analyze the properties of high volume coal-ash concrete using the bottom ash. For this purpose, the mix proportions of concrete according to the replacement ratio of bottom ash(l0, 20, 35, 50%). And then air content, slump, compressive strength, durability test were performed. According to test results, it was found that the compressive strength of bottom ash concrete was similar to that of plain concrete(BA0). And the carbonation depth of bottom ash concrete increased as the replacement ratio of bottom ash.

  • PDF

Effects of ${\beta}$-Conglycinin and Glycinin on Thermal Gelation and Gel Properties of Soy Protein

  • Kang, Il-Jun;Lee, Young-Sook
    • Food Science and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.11-15
    • /
    • 2005
  • Dynamic shear moduli of isolated soy protein solutions upon heating were measured to monitor gelation. Onsets of gelation coincide with onset temperatures of denaturation in glycinin and ${\beta}$-conglycinin solutions, whereas in isolated soy proteins, onset of gelation was above denaturation temperature of ${\beta}$-conglycinin with storage modulus increasing in two steps. The first increase in storage modulus of isolated soy proteins occurred at about $78.5^{\circ}C$, while the second increase started at about $93^{\circ}C$. Gel properties of soy protein gels having different proportions of glycinin and ${\beta}$-conglycinin were measured by compression-decompression test. ${\beta}$-conglycinin was responsible for gel elasticity. Glycinin significantly increased hardness, toughness, and fracturability of gels at high heating temperature near $100^{\circ}C$. Results reveal texture of soy protein gels can be controlled by regulating ratio of glycinin to ${\beta}$-conglycinin and heating temperature.

부순모래 콘크리트의 황산염해에 관한 연구 (A Study on the Sulfate Attack of Concrete Using in Crushed Aggregates)

  • 김광열;김강민;백동일;김명식;김종수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.217-220
    • /
    • 2005
  • As this study is to test effects of sulfate attack on deterioration of concrete using in crushed aggregates. Besides tests have been carried out with concrete by river sand and crushed sand by fine sand, concrete mixes various proportions of slica fume and fly ash(up to 15$\%$ by weight fo cement) were prepared and immersed in pure water, sodium sulfate solution for 28 and 60days. Test on the change in the weight and compressive strength of concrete according to the duration of immersion time and the content of slica fume and fly ash was performed.

  • PDF

$80{\sim}100MPa$급 고강도 콘크리트의 폭렬방지 (Spalling Resistance of $80{\sim}100MPa$ High Strength Concrete)

  • 허영선;배장춘;이재삼;한창평;양성환;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.481-484
    • /
    • 2006
  • This study investigates the engineering and fire endurance properties of ultra high strength concrete. The mixture proportions with water to binder ratios (W/B) of 0.15 and 0.25 consist of various adding ratios, such as 0, 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3 percent respectively, of polypropylene (PP) fiber. As for the parameters of specimens, fluidity, compressive strength and unloading fire test were carried out. Test showed that an increase of fiber contents had the favorable properties in fire endurance performance; specimens in W/B 15% required 0.3vol% of PP fiber and specimens in W/B 25% needed only 0.1vol% to prevent spalling.

  • PDF

확률 신경망이론을 사용한 콘크리트 압축강도 추정 (Prediction of Compressive Strength of Concrete using Probabilistic Neural Networks)

  • 김두기;이종재;장성규;임병용
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.311-316
    • /
    • 2003
  • The compressive strength of concrete is a criterion to produce concrete. However, the tests on the compressive strength are complicated and time-consuming. More importantly, it is too late to make improvement even if the test result does not satisfy the required strength, since the test is usually performed at the 28th day after the placement of Concrete at the Construction site. Therefore, strength prediction before the placement of concrete is highly desirable. This study presents the probabilistic technique for predicting the compressive strength of concrete on the basis of concrete mix proportions. The estimation of the strength is based on the probabilistic neural network, and show that the present methods are very efficient and reasonable in predicting the compressive strength of concrete probabilistically.

  • PDF

Investigation of engineering properties of clayey soil experimentally with the inclusion of marble and granite waste

  • Baki Bagriacik;Gokhan Altay;Cafer Kayadelen
    • Geomechanics and Engineering
    • /
    • 제34권4호
    • /
    • pp.425-435
    • /
    • 2023
  • Granite and marble are widely produced and utilized in the construction industry, resulting in significant waste production. It is essential to manage this waste appropriately and repurpose it in recycling processes to ensure sustainability. The utilization of waste materials such as marble and granite waste (MGW) has become increasingly important in geotechnical engineering to improve the physical and mechanical properties of weak soils. This study investigated the applicability of utilizing MGW and cement (C)-MGW mixtures to improve clayey soil. A series of model plate loading tests were carried out in a specialized circular test tank to assess the influence of MGW and C-MGW mixing ratios on clayey soil samples. The samples were prepared by blending MGW and C-MGW in predetermined proportions. It is found that the bearing capacity of clay soil increased by approximately 71% when using MGW and C additives. Moreover, the consolidated settlement values of the clay soil decreased up to 6 times compared to the additive-free case.

수밀 콘크리트용 규불화염계 무기 조성물을 첨가한 콘크리트 수밀성 및 균열저감 특성 (Watertightness and Crack Reduction Property of Concrete added Fluosilicate Salt Based Inorganic Compound for Watertight Concrete)

  • 김도수;길배수;최세진;박민용;이성연;여병철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2004년도 학술대회지
    • /
    • pp.33-38
    • /
    • 2004
  • This study was performed to know watertightness and reduction effect and crack occurred by hydration heat, restraint of multiplication of hydration heat, through mechanical test, strength test and crack control test using fluosilicate salt based inorganic compound made from by-product during phosphoric acid manufacturing process. Mix proportions for experiment were modulated at 0.45 of water to cement ratio and $0.5-2.0\%$ of adding ratio of fluosilicate salt based inorganic compound. Evaluation for watertightness of concrete was carried out permeability, absorption test and porosity analysis. Effect of crack reduction was evaluated by length, drying shrinkage as well as stress change of hardened concrete at unrestraint/restraint state and also elucidated crack pattern on the concrete surface. It is ascertained that characteristics of crack resistance and watertightness for concrete was improved by an adequate addition of fluosilicate salt based inorganic compound.

  • PDF

9 장용피기제에 관한 연구(제1보) Invitro Test에 의한 기제의 선택에 대하여 (Studies on Enteric Coating Bases. I Selection of Enteric Coating Bases by Invitro Test)

  • 김수억;지달현;문정현;이금정
    • 약학회지
    • /
    • 제5권1호
    • /
    • pp.31-36
    • /
    • 1960
  • The importance of enteric coating technique among the pharmaceutical firms has recently risen very significantly. This study of enteric coating bases was made in order to determine the most suitable bases and dusting powders. Materials and equipment used in this experiment are shown in table 1 and kinds of enteric coating bases and their formulas are shown in table 2. The evaluation of the suitability for enteric coating bases and dusting powder was made by disintergration test after measuring the thickness of the enteric coated layer as shown in the tables 4 and 5. Based on the results of this study, the base D(shellac 20 Gm, anhydrous lanoline 5 Gm, 96% alcohol 75 ml) and the base E (shellac 10 Gm, cetyl alcohol 10 Gm. acetone 80 ml) are selected among the 8 kinds of bases studied in a preliminary test and it was found that Mg-stearate and CA-stearate were in most suitable dusting powders among the 6 kinds studied for the bases D and E. Further study on base D and E was carried out by varying the proportions of the materials which were the original constituents of bases D and E. According to the result of this further study shown in table 6, the shellac 15 Gm cetyl alcohol 5 Gm Acetone 80 ml of base E is recommended as the most suitable dusting powder.

  • PDF

수중에 노출된 농업용 콘크리트 구조물 보수용 라텍스개질 모르타르의 적정 배합비 도출 (Optimum Mix Proportions of Latex Modified Repair Mortar for Agricultural Underwater Concrete Structure)

  • 원종필;이재영;박찬기;이상우;김완영
    • 한국농공학회논문집
    • /
    • 제49권3호
    • /
    • pp.43-50
    • /
    • 2007
  • The purpose of this study was to determine the optimum mix proportion of latex modified mortar for agricultural underwater concrete structures repair. The experimental variables included a latex and antiwashout admixture amount, binder-sand ratio, water-binder ratio. This study were evaluated a repair performance and environment effect of latex modified repair mortar for agricultural underwater concrete structures. The pH test was conducted to evaluated the environmental effect and the flow test was peformed to evaluated the workability. Also, compressive, flexural and bond tests were conducted. Test results show that the optimum mix proportion of latex modified repair mortar for agricultural underwater concrete structures, was achieved by 1:1.5 binder-sand ratio, 5% latex ratio (weight of binder), 1.3% antiwashout admixture ratio (weight of binder), 0.33 water-binder ratio and 10% silica lune replacement ratio (weight of cement). The environmental effect and repair performance of optimum mix proportion satisfied all target performance.

Estimation of Concrete Strength Using Improved Probabilistic Neural Network Method

  • Kim Doo-Kie;Lee Jong-Jae;Chang Seong-Kyu
    • 콘크리트학회논문집
    • /
    • 제17권6호
    • /
    • pp.1075-1084
    • /
    • 2005
  • The compressive strength of concrete is commonly used criterion in producing concrete. However, the tests on the compressive strength are complicated and time-consuming. More importantly, it is too late to make improvement even if the test result does not satisfy the required strength, since the test is usually performed at the 28th day after the placement of concrete at the construction site. Therefore, accurate and realistic strength estimation before the placement of concrete is being highly required. In this study, the estimation of the compressive strength of concrete was performed by probabilistic neural network(PNN) on the basis of concrete mix proportions. The estimation performance of PNN was improved by considering the correlation between input data and targeted output value. Improved probabilistic neural network was proposed to automatically calculate the smoothing parameter in the conventional PNN by using the scheme of dynamic decay adjustment (DDA) algorithm. The conventional PNN and the PNN with DDA algorithm(IPNN) were applied to predict the compressive strength of concrete using actual test data of two concrete companies. IPNN showed better results than the conventional PNN in predicting the compressive strength of concrete.