• 제목/요약/키워드: proportional flow control valve

검색결과 78건 처리시간 0.024초

IMV 비례 유량제어밸브 정특성 선형해석 (Liner Analysis of IMV Proportional Flow Control Valve Static Characteristics)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권4호
    • /
    • pp.56-64
    • /
    • 2019
  • Recently, as the environmental regulation for earth moving equipment has been tightened, advanced systems using electronic control have been introduced for energy savings. An IMV(Independent Metering Valve), which consists of four 2-way valves, is one of the electro-hydraulic control systems that provides more flexible controllability and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully realize an IMV, a two-stage bi-directional flow control valve which can regulate the large amount of flow in both directions, should be developed in advance. A simple design that allows proportional flow control to apply the pilot pressure from the current-controlled solenoid to the spring loaded flow control spool and thus valve displacement, is proportional to the solenoid current. However, this open-loop type valve is vulnerable to flow force which directly affects the valve displacement. Force feedback servo of which the position loop is closed by the feedback spring which interconnects the solenoid valve and flow control spool, could compensate for the flow force. In this study, linearity for the solenoid current input and robustness against load pressure disturbance is investigated by linear analysis of the static nonlinear equations for the IMV proportional flow control valve with feedback spring. Gains of the linear system confirm the performance improvement with the feedback spring design.

굴삭기 IMV용 비례 유량제어밸브 정특성 해석 (Static Analysis of Dedicated Proportional Flow Control Valve for IMV)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.39-47
    • /
    • 2018
  • Recently, as environmental regulations for earth-moving equipment have been tightening, advanced systems such as electronic control, have been introduced for energy savings. An IMV (Independent Metering Valve) consisting of four 2-way valves, is an electro-hydraulic control systems that provides more flexible controllability, and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully maximize use of an IMV, the bi-directional flow control valve that can regulate a large amount of flow in both directions, should be adopted. The hydraulic circuit of an IMV applied to an excavator from an overseas construction equipment company, reveals the flow control valve with the compound of proportional solenoid valve for first stage, and 2-way spool valve for the second stage. Moreover, the two spools are interconnected by a feedback spring, presumed to compensate for flow force acting on the second stage spool. This paper addresses the static analysis of flow control valve in an IMV to investigate the improvement of robustness, against flow force by the feedback spring. From the steady-state analysis of flow control valve model, it can be concluded that the feedback spring facilitates maintaining linearity of spool displacement for control input, and relatively constant flow for load disturbance.

비례유량제어밸브 네트워크 제어기 설계 (Design of Network Controller for Proportional Flow Control Solenoid Valve)

  • 정규홍
    • 유공압시스템학회논문집
    • /
    • 제8권4호
    • /
    • pp.17-23
    • /
    • 2011
  • Proportional control solenoid is a type of modulating valve that can continuously control the valve position with magnetic force of solenoid. Recent microcontroller based digital servocontroller for proportional valve is being developed toward the smart valve with additional features such as enhanced control algorithm for finer process and intelligent on-board diagnosis for maintenance. In this paper, development of servocontroller network control with CAN bus which is free from problems of security and network traffic jam is presented. Design of network control system includes modes of communication between master and slave, assignment of 29bit message identifier and message objects, transaction of communication sequence, etc. Monitoring function and control experiments for remote valve through CAN network prove the extended function of smart valve control system.

스풀 변위 피드백을 위한 LVDT 적용 비례전자제어밸브의 개발 및 성능평가 (Development of Electronic Proportional Control Valve with LVDT for Spool Displacement Feedback and Its Performance Evaluation)

  • 신행봉;한성현
    • 한국산업융합학회 논문집
    • /
    • 제19권3호
    • /
    • pp.160-166
    • /
    • 2016
  • This study proposes the development and performance evaluation of electronic proportional control valve having an LVDT. The electronic proportional control valve is composed of hydraulic valve, proportional solenoid and controller. LVDT is to reduce the steady state error for the reference input of the controller by the feedback signal to detect the displacement of the spool. Designed LVDT is applied to the common proportional valve. In order to evaluate the performance of the developed valve, the hydraulic test equipment was developed and flow tests were carried out. From experimental results, it was proved that the hysteresis was less than 1% based on the maximum flow rate.

비례솔레노이드 액추에이터를 이용한 압력제어밸브 (Pressure Control Valve using Proportional Electro-magnetic Solenoid Actuator)

  • 함영복;박평원;윤소남
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1202-1208
    • /
    • 2006
  • This paper presents an experimental characteristics of electro-hydraulic proportional pressure control valve. In this study, poppet and valve body which are assembled into the proportional solenoid were designed and manufactured. The constant force characteristics of proportional solenoid actuator in the control region should be independent of the plunger position in order to be used to control the valve position in the fluid flow control system. The stroke-force characteristics of the proportional solenoid actuator is determined by the shape (or parameters) of the control cone. In this paper, steady state and transient characteristics of the solenoid actuator for electro-hydraulic proportional valve are analyzed using finite element method and it is confirmed that the proportional solenoid actuator has a constant attraction force in the control region independently on the stroke position. The effects of the parameters such as control cone length, thickness and taper length are also discussed.

수중발사를 위한 ATP 방식 압축수 방출시스템의 동특성 해석 (Analysis of the Dynamic Characteristics of Pressurized Water Discharging System for Underwater Launch using ATP)

  • 한명철;김정관;김광수
    • 제어로봇시스템학회논문지
    • /
    • 제15권6호
    • /
    • pp.567-572
    • /
    • 2009
  • The underwater launch system using an ATP consists of five parts: compressor tank, proportional flow control servo valve, expulsion spool valve, air turbine pump, and discharge tube. The purpose of this study is to develop an underwater launch system using an ATP and to verify the validity of the system. The proportional flow control servo valve is modeled as a 2nd order transfer function. The projectile is ejected by pressurized water through the air turbine pump, which is controlled by expulsion valve. The mathematical model is derived to estimate the dynamic characteristics of the system, and the important design parameters are derived by using simulations. The computer simulation results show the dynamic characteristics and the possibility of control for underwater launch system.

고응답 비래 유량제어 밸브의 동특성 향상에 관한 연구 (A Study on Dynamic Characteristics Improvement of Fast Response Proportional Flow Control Valve)

  • 김고도;김원수;이현철;윤소남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.1053-1057
    • /
    • 1996
  • The purpose of this study is to bring out the optimal design factors which effect on dynamic characteristics in the design of proportional flow control valve with fast response characteristics, and to verify the validity of the design factors In this study, force feedback type flow control valve with nozzle-flapper is studied. And, the influences which fixed orifice, nozzle diameter, and maximum displacement between nozzle and flapper effect on dynamic characteristics are analyzed. We have done simulations using the optimal design factors and simulink(Matlab) as a simulation tool, and verified the validity of our simulations by means of comparison our simulation results with an experimental results of another similar valve.

  • PDF

대용량 비례 유량제어밸브 동특성 분석 (Dynamic Characteristics of Proportional Flow Control Valve with Large Capacity)

  • 정규홍
    • 유공압시스템학회논문집
    • /
    • 제7권1호
    • /
    • pp.20-27
    • /
    • 2010
  • Electromagnetic control valves have been used for almost 20 years. As the solenoid modulating technology advances, its applications are extending to various industrial fields such as nuclear and fossil fuel power plants, chemical plants and refineries. Proportional solenoid valve for large flow control is designed with two-stage configuration to meet the required actuating force on the main disc and its position is stabilized by the self-controlled system. In this research, main disc dynamics is analyzed with linearized system model which is derived from the mathematical equations describing its nonlinear behavior. Major design parameters of the valve control system that affect the response and stability are also studied with root locus method. The linear dynamic analysis results are verified with simulations in time-domain.

  • PDF

파일럿 비례압력제어밸브의 정특성 및 동특성에 관한 실험적 분석 (Experimental Analysis of the Static and Dynamic Characteristics for a Pilot Proportional Pressure Control Valve)

  • 정헌술;남지우
    • 유공압시스템학회논문집
    • /
    • 제8권4호
    • /
    • pp.9-16
    • /
    • 2011
  • Because of the increasing demand on the high precision and high response of a machinery, proportional control valves are widely adopted at various application fields. This paper studies on the static and dynamic characteristics of a pilot proportional pressure control valve. An experimental apparatus including hydraulic pump, variable speed inverter, pressure and flow sensors and data aquisition system was set up. And various experiments such as P-Q-V curves, step responses due to input voltage and flow rate, hysteresis, frequency response of the proportional valve was carried out and the results are discussed.

비례밸브를 이용한 트랙터 3점 히치 제어 시스템 개발 (Development of Tractor Three-point Hitch Control System using Proportional Valve)

  • 이상식;박원엽
    • Journal of Biosystems Engineering
    • /
    • 제36권2호
    • /
    • pp.89-95
    • /
    • 2011
  • Tractor implements are mainly utilized for the tillage operation. The proposed hydraulic system control was implemented to experimental apparatus. An implement control system for tractor using proportional valve was fabricated to improve the working efficiency. Hydraulic circuit included the proportional solenoid valve and on/off solenoid valve and so on. This paper shows results of a specification and design of an implement control system for tractor using proportional valve for automation. It was conducted to evaluate response characteristics of the designed implement control system under experimental conditions of various input flow rates. The results of experiments showd that the response characteristics was sufficient to be used as the implement control system.