• Title/Summary/Keyword: propidium iodine

Search Result 5, Processing Time 0.028 seconds

Effect of Botulinum Toxin A on Proliferation and Apoptosis in the T47D Breast Cancer Cell Line

  • Bandala, Cindy;Perez-Santos, Jose Luis Martin;Lara-Padilla, Eleazar;Delgado Lopez, Ma. Guadalupe;Anaya-Ruiz, Maricruz
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.891-894
    • /
    • 2013
  • The present study was performed to assess the activity of the botulinum toxin A on breast cancer cells. The T47D cell line was exposed to diverse concentrations of the botulinum toxin A and cell viability and apoptosis were estimated using MTT and propidium iodine/annexin V methods, respectively. Botulinum toxin A exerted greater cytotoxic activity in T47D cells in comparison with MCF10A normal cells; this appeared to be via apoptotic processes caspase-3 and -7. In conclusion, botulinum toxin A induces caspase-3 and -7 dependent apoptotic processes in the T47D breast cancer cell line.

Inhibitory Effect of Transition Metal Gallium [Ga(NO3)3] on Biofilm Formation by Fish Pathogens (전이금속 갈륨(Ga(NO3)3)을 이용한 biofilm을 형성하는 어류질병세균의 억제)

  • Kim, Dong-Hwi;Dharaneedharan, Subramanian;Jang, Young-Hwan;Heo, Moon-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.535-539
    • /
    • 2016
  • The prevalence of pathogenic bacteria such as Streptococcus parauberis (Sp), Streptococcus iniae (Si), and Edwardsiella tarda (Et) in flounder fish farms in Jeju Island and their management by gallium treatment was studied. Sp, Si, and Et were found to exhibit a low rate of cell growth and high biofilm formation. Hence, in the present study, cell growth and biofilm formation were measured spectrophotometrically 72 h after the addition of different concentrations of gallium (2, 4, or 8 mg/ml). In addition, cell death was measured by resazurin and propidium iodide staining assays. The results showed that bacterial cell death increased and biofilm formation decreased with an increasing concentration of gallium. Hence, the present study signifies that the use of gallium against bacterial pathogens could be useful for disease management in flounder farms.

Ginsenoside-Rp1-induced apolipoprotein A-1 expression in the LoVo human colon cancer cell line

  • Kim, Mi-Yeon;Yoo, Byong Chul;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.38 no.4
    • /
    • pp.251-255
    • /
    • 2014
  • Background: Ginsenoside Rp1 (G-Rp1) is a novel ginsenoside derived from ginsenoside Rk1. This compound was reported to have anticancer, anti-platelet, and anti-inflammatory activities. In this study, we examined the molecular target of the antiproliferative and proapoptotic activities of G-Rp1. Methods: To examine the effects of G-Rp1, cell proliferation assays, propidium iodine staining, proteomic analysis by two-dimensional gel electrophoresis, immunoblotting analysis, and a knockdown strategy were used. Results: G-Rp1 dose-dependently suppressed the proliferation of colorectal cancer LoVo cells and increased their apoptosis. G-Rp1 markedly upregulated the protein level of apolipoprotein (Apo)-A1 in LoVo, SNU-407, DLD-1, SNU-638, AGS, KPL-4, and SK-BR-3 cells. The knockdown of Apo-A1 by its small-interfering RNA increased the levels of cleaved poly(ADP-ribose) polymerase and p53 and diminished the proliferation of LoVo cells. Conclusion: These results suggest that G-Rp1 may act as an anticancer agent by strongly inhibiting cell proliferation and enhancing apoptosis through upregulation of Apo-A1.

Radiation-induced Apoptosis, Necrosis and G2 Arrest in Fadu and Hep2 Cells

  • Lee Sam-Sun;Kang Beom-Hyun;Choi Hang-Moon;Jeon In-Seong;Heo Min-Suk;Choi Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.30 no.4
    • /
    • pp.275-279
    • /
    • 2000
  • Purpose: Radiation damage is produced and viable cell number is reduced. We need to know the type of cell death by the ionizing radiation and the amount and duration of cell cycle arrest. In this study, we want to identified the main cause of the cellular damage in the oral cancer cells and normal keratinocytes with clinically useful radiation dosage. Materials and Methods: Human gingival tissue specimens obtained from healthy volunteers were used for primary culture of the normal human oral keratinocytes (NHOK). Primary NHOK were prepared from separated epithelial tissue and maintained in keratinocyte growth medium containing 0.15 mM calcium and a supplementary growth factor bullet kit. Fadu and Hep-2 cell lines were obtained from KCLB. Cells were irradiated in a /sup 137/Cs γ-irradiator at the dose of 10 Gy. The dose rate was 5.38 Gy/min. The necrotic cell death was examined with Lactate Dehydrogenase (LDH) activity in the culture medium. Every 4 day after irradiation, LDH activities were read and compared control group. Cell cycle phase distribution and preG1-incidence after radiation were analyzed by flow cytometry using Propidium Iodine staining. Cell cycle analysis were carried out with a FAC Star plus flowcytometry (FACS, Becton Dickinson, USA) and DNA histograms were processed with CELLFIT software (Becton Dickinson, USA). Results: LDH activity increased in all of the experimental cells by the times. This pattern could be seen in the non-irradiated cells, and there was no difference between the non-irradiated cells and irradiated cells. We detected an induction of apoptosis after irradiation with a single dose of 10 Gy. The maximal rate of apoptosis ranged from 4.0% to 8.0% 4 days after irradiation. In all experimental cells, we detected G2/M arrest after irradiation with a single dose of 10 Gy. Yet there were differences in the number of G2/M arrested cells. The maximal rate of the G2/M ranges from 60.0% to 80.0% 24h after irradiation. There is no significant changes on the rate of the G0/G1 phase. Conclusion: Radiation sensitivity was not related with necrosis but cell cycle arrest and apoptosis. These data suggested that more arrested cell is correlated with more apoptosis.

  • PDF

Effects of Sea Buckthorn (Hippophae rhamnoides L.) Fruit Extract on Ultraviolet-induced Apoptosis of Skin Fibroblasts (UV조사에 의해 유도된 피부섬유아세포의 세포사에 미치는 Sea Buckthorn (Hippophae rhamnoides L.) 열매추출물의 영향)

  • Hwang, In Sik;Koh, Eun Kyoung;Kim, Ji Eun;Lee, Young Ju;Kwak, Moon Hwa;Go, Jun;Sung, Ji Eun;Song, Sung Hwa;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.467-475
    • /
    • 2014
  • Sea buckthorn (Hippophae rhamnoides L.) is a well-known and rich source of biologically active compounds, such as flavonoids, carotenoids, steroids, vitamins, tannins, and oleic acid. The effects of sea buckthorn fruit extract (SBFE) on ultraviolet (UV)-induced cell death was investigated in SK-MEL-2 cells cotreated with UV and a low concentration (LoC), medium concentration (MeC), or high concentration (HiC) of SBFE. Cell viability gradually decreased in accordance with an increase in the UV dose. The cell viability of the UV+SBFE cotreated cells increased significantly compared to that of UV+vehicle-treated cells during the application of an appropriate UV radiation dose (400 mJ). In addition, the number of 4',6-diamidino-2-phenylindole (DAPI), propidium iodine (PI)-, and annexin V-stained apoptotic cells was higher in the UV+vehicle-treated cells than in the UV untreated cells. The decrease of apoptotic cell numbers varied in each treated group, but it was most significant in the SBFE-treated group. The number of PI-stained cells dramatically decreased in accordance with the concentration of SBFE, and the maximum decrease was detected in the UV+HiC-treated group. In addition, Bax expression increased and Bcl-2 expression decreased in the SBFE-treated group compared with the UV-only treated group. The level of caspase-3 remained constant in all the groups. These results suggest that SBFE may contribute to a recovery from UV-induced cell death through the regulation of apoptotic protein expression and that it may have potential therapeutic utility in ameliorating UV-induced skin ageing.