• Title/Summary/Keyword: properties and analysis

Search Result 17,815, Processing Time 0.054 seconds

Drag Torque Prediction for Automotive Wheel Bearing Seals Considering Viscoelastic as Well as Hyperelastic Material Properties (초탄성 및 점탄성 물성을 고려한 자동차용 휠 베어링 실의 드래그 토크 예측)

  • Lee, Seungpyo
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.267-273
    • /
    • 2019
  • Wheel bearings are important automotive parts that bear the vehicle weight and translate rotation motion; in addition, their seals are components that prevent grease leakage and foreign material from entering from the outside of the bearings. Recently, as the need for electric vehicles and eco-friendly vehicles has been emerging, the reduction in fuel consumption and $CO_2$ emissions are becoming the most important issues for automobile manufacturers. In the case of wheel bearings, seals are a key part of drag torque. In this study, we investigate the prediction of the drag torque taking into consideration the hyperelastic and viscoelastic material properties of automotive wheel bearing seals. Numerical analysis based on the finite element method is conducted for the deformation analyses of the seals. To improve the reliability of the rubber seal analysis, three types of rubber material properties are considered, and analysis is conducted using the hyperelastic material properties. Viscoelastic material property tests are also conducted. Deformation analysis considering the hyperelastic and viscoelastic material properties is performed, and the effects of the viscoelastic material properties are compared with the results obtained by the consideration of the hyperelastic material properties. As a result of these analyses, the drag torque is 0.29 Nm when the hyperelastic characteristics are taken into account, and the drag torque is 0.27 Nm when both the hyperelastic and viscoelastic characteristics are taken into account. Therefore, it is determined that the analysis considering both hyperelastic and viscoelastic characteristics must be performed because of its reliability in predicting the drag torque of the rubber seals.

The piling-up/sinking-in response of elasto-plastic materials in nano-indentation using sharp indenter (나노 인덴테이션 시험에서의 탄소성 재료의 파일업/싱크인 특성)

  • Kim, Byung-Min;Lee, Chan-Joo;Lee, Jung-Min;Lee, Sang-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1367-1372
    • /
    • 2007
  • Over the past decade, many computational researches have been performed to investigate quantitative relationships between load-displacement and material properties. But piling-up which causes errors to estimate mechanical material properties remains the most significant unresolved issue in nano-indentation test. This study has estimated quantitative aspects of the effects of material properties, especially work hardening exponent, on piling up/sinking in response of various materials. Using FE Analysis, piling up/sinking in response when material is indented by sharp indenter is investigated to evaluate the effects of material properties. From the FE analysis result, quantitative relationships between piling up/sinking in height and material properties is assessed using dimensional analysis which is used to define scaling variables and universal functions. And nano-indentaion test is performed to verify this relation on various materials. From the result of comparison with prediction from dimensional function and experiment, the work hardening exponent was found to have greater influence on the piling up/sinking in height during the nano-indentation than other material properties, such as elastic modulus and yield stress.

  • PDF

Relationship between Plant Species Covers and Soil Chemical Properties in Poorly Controlled Waste Landfill Sites

  • Kim, Kee-Dae;Lee, Eun-Ju
    • Journal of Ecology and Environment
    • /
    • v.30 no.1
    • /
    • pp.39-47
    • /
    • 2007
  • The relationships between the cover of herbaceous species and 15 soil chemical properties (organic carbon contents, total N, available P, exchangeable K, Na, Ca and Mg, HCl-extractable Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in nine poorly controlled waste landfill sites in Korea were examined by correlation analysis and multiple regression equations. Species showed different patterns of correlation between their cover values and soil chemical properties. The cover of Ambrosia artemisiifolia var. elatior, Aster subulatus var. sandwicensis and Erechtites hieracifolia were negatively correlated with the contents of Fe, Mn and Ni within landfill soils. Total cover of all species in quadrats was positively correlated with the contents of Cd and negatively correlated with the contents of Mn and Fe from stepwise regression analysis with 15 soil properties. Canonical correspondence analysis demonstrated that the distribution of native and exotic plants on poorly controlled landfills was significantly influenced by the contents of Na and Ca in soils, respectively.

The Analytical Study of Fire Properties in Atrium Space (아트리움 공간에 있어서 화재온도성상에 관한 이론해석)

  • 김화중;이지희;최금란;김경례
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.113-119
    • /
    • 1993
  • Atrium being on fire, the flame is spread vertically, the methods of fire protection and the standards of security are different respectively. Therefore, in the case of atrium, it has many problems on the fire protection and the application of statute according to the space properties. So it is important to analysis, atrium being on fire, fire properties to space properties. From these points of view, the purpose of this study is to analysis the fire properties of atrium .

  • PDF

Crimp Angle Dependence of Effective Properties for 3-D Weave Composite (굴곡각에 따른 3차원 평직 복합재료의 등가 물성치 예측)

  • Choi, Yun-Sun;Woo, Kyeongsik
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.33-39
    • /
    • 2016
  • In this study, geometric modeling and finite element analysis of 3-dimensional plain weave composite unit cell consisting of 3 interlaced fiber tows and resin pocket were performed to predict effective properties. First, tow properties were obtained from micro-mechanics finite element unit cell analysis, which were then used in the meso-mechanics analysis. The effective properties were obtained from a series of unit cell analyses simulating uniaxial tensile and shear tests. Analysis results were compared to the analysis and experimental results in the literature. Various crimp angles were considered and the effect on the effective properties was investigated. Initial failure strengths and failure sequence were also examined.

Precision Digital Data Capture and Spatial Analysis for Preserving Cultural Properties (문화재 보존을 위한 수치자료 구축과 공간분석)

  • Kang, Joon-Mook;Suh, Man-Cheol;Bae, Sang-Ho;Lee, Sung-Soon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.5 no.2 s.10
    • /
    • pp.55-63
    • /
    • 1997
  • Precision digital data capture and spatial analysis system to cultural properties play important roles in preserving the existing properties. This study presents the acquisition oi digital data in geometrical context and spatial analysis for more effective management to cultural properties. Established in the same coordinates system, Precision 3D measurements and image analysis were peformed. In addition, geometrical analysis, and 3D monitoring to Songsanri Royals Tombs in Gongju were carried out in generating basedata for conservation plan.

  • PDF

Multiscale Stress Analysis of Palladium/Carbon Fiber Composites for the Hydrogen High Pressure Vessel (수소고압저장용기용 팔라듐 첨가 탄소섬유복합재에 대한 멀티스케일 응력해석)

  • Park, Woo Rim;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.1-7
    • /
    • 2018
  • The multi-scale analysis is more proper and precise for composite materials because of considering the individual microscopic structure and properties of each material for composite materials. The purpose of this study is to verify the validity of using palladium particles in carbon/fiber composites by multi-scale analysis. The palladium is a material for itself to detect leaking hydrogen by using the property of adsorbing hydrogen. The macroscopic model material properties used in this study are homogeneous material properties from microstructure. Homogenized material properties that are calculated from periodic boundary conditions in the microscopic representative volume element model of each macroscopic analysis model. In this study, three macroscopic models were used : carbon fiber/epoxy, carbon fiber/palladium, palladium/epoxy. As a result, adding palladium to carbon/epoxy composite is not a problem in terms of strength.

Derivation of affective factors for automotive interior material and its association analysis on material properties (자동차 내장 재질의 감성 품질요인 도출 및 물리적 특성치와의 연관성 분석)

  • Park, Sungjoon;Park, Jaekyu;Choe, Jaeho
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.3
    • /
    • pp.521-532
    • /
    • 2017
  • Purpose: The purpose of this study is to structure affective factors related to the tactile sense in order to improve tactile sensibility satisfaction of interior material. In this paper, we propose the design direction of interior material by analyzing the association between material properties and affective factors for automotive interior material. Methods: The relationship between sensibility adjectives and feelings related to tactile sensation were derived through factor analysis after touching prepared samples that were made by changing the material properties of automotive interior material. The association between affective factors and interior material properties were analyzed through ANOVA. Results: Seven kinds of visual and tactile affective factors were derived from the correlation between feeling of material and sensibility adjectives measured by 215 subjects. It is found that there is a quadratic relationship rather than a linear relationship through association analysis between affective factors and the material properties such as roughness, friction coefficient, and hardness. Conclusion: This study suggests the direction of the interior material design which can improve the sensibility satisfaction of the automobile customers by identifying the tactile factors related to the material properties of automotive interior material.

Improvement of Dao's Reverse Analysis and Determination of Representative Strain for Extracting Elastic-Plastic Properties of Materials in Analysis of Nanoindentation (나노압입공정 해석에서 재료의 탄소성 특성 도출을 위한 대표변형률의 결정과 Dao의 Reverse 해석의 향상)

  • Lee, Jung-Min;Lee, Chan-Joo;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.105-118
    • /
    • 2008
  • The newly developed analysis method for nanoindentation load-displacement curves are focused on not only obtaining elastic modulus and hardness values but also other mechanical properties, such as yield strength and strain hardening properties. Dao et al. developed a forward and reverse algorithm to extract the elasto-plastic properties of materials from the load-displacement curves obtained in nanoindentation test. These algorithms were only applicable for engineering metals (Poisson#s ratio 0.3) using the equivalent conical indenter of the Berkovich. However, the applicable metals are substantially limited because range of used in the finite element analysis is narrow. This study is designed to expand range of the applicable metals in the reverse algorithms established by Dao et al. and to improve the accuracy of that for extracting the elasto-plastic properties of materials. In this study, a representative strain was assumed to vary according to specific range of $E^*/{\sigma}_r$ and was defined as function of $E^*/{\sigma}_r$. Also, an initial unloading slope in reverse algorithms improved in this study was not considered as independent parameters of the load-displacement curves. The mechanical properties of materials for finite element analysis were modeled with the elastic modulus, E, the yield strength, ${\sigma}_y$, and the strain hardening exponents, n. We showed that the representative strain (0.033) suggested by Dao et al. was no longer applicable above the $E^*/{\sigma}_r$ of 400 and depended on values of $E^*/{\sigma}_r$. From these results, we constructed the dimensionless functions, in where the initial unloading slope was not included, for engineering metals up to $E^*/{\sigma}_r$ of 1500. These functions allow us to determine the mechanical properties with greater accuracy than Dao#s study.

Physicochemical and Texture of Bread added Paecilomyces japonica according to Storage Period (동충하초 첨가식빵의 저장기간에 따른 이화학적. 텍스쳐 특성)

  • 박금순;김수진;박어진
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.11 no.6
    • /
    • pp.485-497
    • /
    • 2001
  • For a period of 5 days, the quality of breads with Paecilomyces japonica powder were investigated using chemical, sensory, and mechanical evaluations at $25^{\circ}C$. The result of analysis of chemical properties revealed that the pH value of dough was increased as the amount of Paecilomyces japonica powder increased, but volume of dough and baking loss rate were decreased. Breads with 1% and 2% Paecilomyces japonica powder showed a good overall preference in sensory evaluation. As storing time passed. moisture content, lightness, and redness were decreased in all breads, but yellowness increased. Hardness and gumminess of texture analysis were increased as storing time passed, but springiness decreased. Springiness of the mechanical properties was negatively correlated with pH value of dough and volume of bread, while was positively correlated with volume of dough and baking loss rate. In the analysis of correlation between sensory and mechanical properties showed that hardness of mechanical properties had negative correlation with softness, moistness, and springiness. Cohesiveness of mechanical properties had positive correlation with acceptability.

  • PDF