• Title/Summary/Keyword: propeller design

Search Result 394, Processing Time 0.031 seconds

50 M급 비행선 추진용 프로펠러 설계 및 지상성능시험 (Design and Ground Test of Propeller for 50 m-long Airship Propulsion)

  • 김형진;이창호;전성민;임병준;이진근;양수석
    • 한국항공우주학회지
    • /
    • 제31권10호
    • /
    • pp.112-119
    • /
    • 2003
  • 50 m급 비행선의 추진을 위한 복합재 프로펠러를 공력/구조 설계하였으며, 지상 성능 시험을 수행하였다. 먼저 와류-깃요소 이론을 적용하여 비행선의 최대 비행 속도 조건에서 최소 손실을 갖는 45 kW급 프로펠러를 설계하였다. 프로펠러는 직경 2m, 블레이드 수 3, 고정피치 방식을 적용하였으며, 추력 제어를 위해 RPM 조절방식을 채택하였다. 설계한 프로펠러의 성능을 검증하기 위하여 지상정지 상태에서 프로펠러의 피치각을 변화시켜 가며 추력과 토크를 측정하여 이론적 방법으로 계산한 추력계수, 동력계수와 비교하였으며, 시험결과와 이론적 계산 결과는 잘 일치함을 확인하였다.

대형 선박 프로펠러 가공 공정용 터닝 시스템에 관한 연구 (A Study on the Turning System for Processing a Large Ship Propeller)

  • 진도훈
    • 한국산업융합학회 논문집
    • /
    • 제26권5호
    • /
    • pp.825-831
    • /
    • 2023
  • The propellers used for big ships have a large diameter and are very heavy. In order to apply a precise and safe work process to them, it is necessary to use an exclusive turning system. For this reason, various techniques are applied to produce them. However, workers' convenience and safety are not taken into consideration enough at production sites. Conventionally, these propellers are designed to be separated as their turning system is loaded and rotated by empty weight. Therefore, it is necessary to replace such a design. This study tries to find the weaknesses of the design and structure of a conventional propeller turning system for large ships, to verify structure integrity of a structure in structural analysis, and to devise a plan for designing a new type of turning system. In the basic concept design and structural analysis for the turning system used in the propeller finishing process for large ships, this study drew the following conclusions. It was possible to develop the work process of the turning system for the propeller finishing process used for large ships, to obtain the dimensions for exterior design through a basic design. Structural analysis was conducted to find the structure integrity of the turning system. As a result, in the rail installed to transfer a gantry, the maximum stress was about 45MPa, about 5.5 times lower than the yield strength 250MPa. Therefore, the turning system was judged to be safe structurally.

경량화 및 NVH 향상을 위한 복합재료 프로펠러 축의 설계 (Design of a Composite Propeller Shaft with the Reduced Weights and Improved NVH)

  • 윤형석;김철;문명수;오상엽
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.151-159
    • /
    • 2003
  • The front 2 pieces of the 3-piece steel propeller shaft installed on a 8.5-ton truck were redesigned with a 1 -piece composite propeller shaft with steel yokes and spline parts to get the reduction of weight and the improvement of NVH characteristics. Based on the analysis of bending vibration, strength and cure-induced residual stresses of the composite propeller shaft, proper composite materials and stacking sequences were selected. The composite propeller shaft requires a reliable joining method between the shaft and steel end parts through a steel connector. From 3-D contact stress analyses of the laminated composite shaft with bolted Joints, the 3-row mechanical joint which satisfies the torque transmission capability has been designed. Several full-scale composite shafts were fabricated and tested to verify the design analyses. The design requirements are shown to be satisfied. With the newly designed composite shaft, the weight reduction more than 50% and improvements in NVH characteristics have been achieved.

포텐셜 유동에 의한 프로펠러-WIG선의 상호작용 및 성능해석 (Analysis of Propeller-WIG Interaction and Performance in Potential Flow)

  • 전호환;김민규
    • 대한조선학회논문집
    • /
    • 제38권4호
    • /
    • pp.11-22
    • /
    • 2001
  • 프로펠러-WIG(Wing in Ground Effect)선의 상호작용 및 성능을 포텐셜 유동에 의해 해석하였다. 프로펠러는 보오텍스 격자법(VLM)을 사용하였고 WIG선은 포텐셜 기저 패널법을 사용하여 각 경계조건을 만족시키면서 반복계산을 통하여 상호작용 및 성능을 해석하였다. 자유수면은 강체로 가정하여 경상법을 사용하였다. 프로펠러-WIG의 상호작용 및 성능을 해석하기에 앞서 발표된 실험결과와 계산결과가 있는 MP101 프로펠러와 MR-21 타의 상호작용 및 성능해석을 수행하여 개발된 프로그램의 정도를 검증하였다. 프로펠러-WIG선의 상호작용해석은 프로펠러의 부착위치, 직경 및 회전수의 변화에 따른 비행고도 높이 변화에 대한 양력 및 피치모멘트를 계산하여 비교하였다. 날개 앞에 부착된 프로펠러는 WIG선의 양력을 급격히 향상시키며 정적안정성을 향상시킴을 알았다. 따라서 적절한 프로펠러의 크기, 부착위치 및 회전수의 선택이 PARWIG선의 성능향상을 위해 필수적임을 알았다.

  • PDF

무인 표적기 프로펠러의 최적 설계 (Optimal Design of Unmanned Target Drone Propeller)

  • 성형건;노태성
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.115-118
    • /
    • 2003
  • 무인 표적기에 탑재될 추진시스템인 프로펠러를 설계하였다. 프로펠러 설계 방법으로 vortex theory 을 적용하였다. 압축성 효과는 배제하였고, 레이놀즈수는 일정하다고 가정하였다. 설계 변수는 반경 방향에 따른 코드 길이와 비틀림각이며, 최적 설계 목표는 효율의 최대화이다. 설계된 프로펠러의 성능을 해석하였다.

  • PDF

FW-H 방정식을 이용한 선박 추진기 날개통과주파수 소음의 수치예측과 모형시험 검증 (Numerical Prediction of Marine Propeller BPF Noise Using FW-H Equation and Its Experimental Validation)

  • 설한신;박철수;김기섭
    • 한국소음진동공학회논문집
    • /
    • 제26권6_spc호
    • /
    • pp.705-713
    • /
    • 2016
  • Underwater noise produced by ships has been becoming an increasing issue. A dominantly contributing noise source is a ship propeller. Therefore, it is important to predict the propeller noise at the propeller design stages. This study applied the acoustic analogy based on Ffowcs Williams equation for the prediction of the marine propeller BPF noise. A marine propeller BPF noise is investigated experimentally as well as numerically. Propeller BPF noise measurement and propeller cavitation observation tests are performed in the KRISO medium size cavitation tunnel. Numerical prediction schemes of marine propeller BPF noise are presented together with the noise measurement method. Propeller BPF noise predictions and experiments are performed under the various propeller operating conditions including non-cavitating and caveating conditions. Numerical and experimental results are compared and analyzed. It is shown that numerical prediction results are generally in good agreement with the measured data.

프로펠러 날개의 동적 구조해석 시스템 개발 (A Dynamic Structural Analysis System for Propeller Blades)

  • 노인식;이정렬;이현엽;이창섭
    • 대한조선학회논문집
    • /
    • 제41권2호
    • /
    • pp.114-120
    • /
    • 2004
  • Propeller blades have complex airfoil section type geometry and the thickness is continuously varied to both its length and cord-wise direction. in the present research, the finite element analysis program PROSTEC (Propeller Stress Evaluation Code) is developed to calculate the structural responses of propeller blades in irregular ship wake field. To represent the curved and skewed geometry of propeller blades accurately, 20-node curved solid element using the quadratic shape function is adopted. Input data for the analysis including the geometry and pressure distribution of propeller blades can be generated automatically from the propeller design program. And to visualize the results of analysis on windows system conveniently, the post processor PROSTEC-POST is developed.

Numerical simulations of hydrodynamic loads and structural responses of a Pre-Swirl Stator

  • Bakica, Andro;Vladimir, Nikola;Jasak, Hrvoje;Kim, Eun Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.804-816
    • /
    • 2021
  • This paper investigates the effect of different flow models on the Pre-Swirl-Stator structural response from the perspective of a non-existing unified design procedure. Due to viscous effects near the propeller plane, the hydrodynamic solution is calculated by Computational Fluid Dynamics (CFD). Three different models are analysed: without the propeller, with the actuator disk and with the propeller. The main intention of this paper is to clarify the effects of the propeller model on the structural stresses in calm-water and waves which include the ship motion. CFD simulations are performed by means of OpenFOAM, while the structural response is calculated by means of the Finite Element Method (FEM) solver NASTRAN. Calm-water results have shown the inclusion of the propeller necessary from the design perspective, while the wave simulations have shown negligible propeller influence on the resulting stresses arising from the ship motions.

개방형 기술혁신 기반의 지배적 디자인 기술개발 및 확보 전략 : 현대중공업의 HSP(High Skewed Propeller) 설계 및 생산 시스템 (Dominant Design Technology Strategy Based on Open Innovation : High Skewed Propeller(HSP) Design and Production System of Hyundai Heavy Industries Co.)

  • 안연식;김화영
    • Journal of Information Technology Applications and Management
    • /
    • 제25권1호
    • /
    • pp.1-17
    • /
    • 2018
  • This study presents a research model that demonstrates the dominant design technology strategy for developing and securing dominant design technology based on open innovation. For this purpose, this study developed a strategic model for the development and acquisition of design technology, production technology, and production system of propeller which satisfies the requirements of ship propulsion system required by ship owners and shipbuilders. By studying large propellers for ships, it is possible to embody a strategic model that can be used as a technology development strategy of dominant design that is effective in technology field of other industries. In this study, HSP (High Skewed Propeller) strategy of Hyundai Heavy Industries, which occupies the largest global market share (47.5%, 2007) for more than 30 years until now, is analyzed as a successful case to verify this strategic model. The development and acquisition strategy model of dominant design technology presented in this study consists of four stages : dominant design project strategy, dominant design engineering technology strategy, dominant design production technology strategy, and dominant design production system strategy. The strategic model summarizes the key activities at each stage. In addition, the steps and core activities of this strategic model were confirmed through the case study. As a technology development strategy of HSP products, Hyundai Heavy Industries utilized open innovation technology to cooperate with outside, that is, collaborative research and development with KAIST (Korea Advanced Institute of Science and Technology) research team, and succeeded in achieving technology development of dominant design of HSP products by linking it with HSP technology development and acquisition strategy.