• Title/Summary/Keyword: propellant type

Search Result 94, Processing Time 0.031 seconds

Analysis of the Estimation of the Deflection and Hit Probability of a Gun Barrel of Next Infantry Fighting Vehicle (차기 보병전투장갑차 포신 처짐량 예측 및 명중률 분석)

  • Yoo, Sam-Hyeon;Chung, Dong-Yoon;Oh, Myoung-Ho;Shin, Nae-Ho;Nam, Suk-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.12-19
    • /
    • 2006
  • A gun barrel of infantry fighting vehicle is supported like a type of cantilever. Temperature of a gun barrel is increased by heat transfer due to the combustion of propellant charge during the firing. Thus, the muzzle of a gun barrel is deflected in accordance with its temperature and the accuracy rate is decreased by deflection of the muzzle. In this study, deflection of a gun barrel is estimated by measuring its restoration rate because measuring the deflection rate is difficult due to the vibration of the gun barrel during the firing. In order to obtain the relations between deflection rate and restoration rate of the 40mm gun barrel of Next Infantry Fighting Vehicle(NIFV) under varying temperature, measurement of deflection rate and restoration rate is carried out using 5.56mm Remington rifle barrel. Effect of the estimated deflection rate of a gun barrel of NIFV on the hit probability is also analyzed.

A Study on Spray and Mixing Characteristics of Unlike Impinging Triplet Injector (F-O-F, O-F-O) (충돌형(F-O-F, O-F-O) 실물형 분사기의 분무특성 및 혼합특성에 관한 연구)

  • 김종규;김승한;문일윤;이광진;서성현;한영민
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.195-203
    • /
    • 2003
  • Spray and Mixing characteristics of the unlike impinging triplet injectors (F-O-F, O-F-O) were investigated with the variation of the momentum ratio of oxidizer to fuel. The spray pattern was measured using a backlit stroboscopic photography technique, and mixing efficiency was measured using a mechanical patternator. Kerosene/water were used as a propellant simulant. From the experimental results, it is found that a O-F-O type injector has a good atomization. And as the momentum ratio increases, the mixing efficiency decreases rapidly.

  • PDF

Small Thruster Development Based on Pulse Energy (펄스 에너지 기반의 소형 추력 장치 개발)

  • Choi, Soo-Jin;Gojani, Ardian B.;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.365-368
    • /
    • 2009
  • A new concept of a small thruster for altitude control of a micro/nano class satellite is developed, which utilizes the pulsed laser energy. As the laser-based thruster does not require burning of any fuel, it gives promise of small satellite design criteria, namely light weight and cost effectiveness. In this paper, we develop gel-type material for generating strong plasma plume for enhancing thrust for propulsion. Moreover, we quantify the level of thrust via the momentum coupling coefficient measured by the pendulum system. We discover that the driving force is significantly improved via the gel-typed propellant for laser ablation.

  • PDF

Spray Characteristics of Simplex Swirl Injector with Low Hydrodynamic Disturbance Generated by Pressure Fluctuation in Feed Line (축방향 압력섭동에 의해 발생되는 저주파 수력학적 교란이 단일 스월 인젝터에 미치는 영향 분석)

  • Khil, Tae-Ock;Kim, Sung-Hyuk;Kim, Hyeon-Sung;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • The low frequency combustion instability phenomena generated by pressure drop oscillation such as propellant shake in feed line are studied. To generate the flowrate oscillation by the pressure pulsation up to 400Hz without flow discontinuities and cavitations, a hydrodynamic mechanical pulsator of rotating disk type was produced. Injection pressure conditions are 5, 7 and 9 bar and pressure fluctuation frequency conditions are 0, 4, 6 and 8 Hz. When the injection pressure was oscillated by a mechanical pulsator, the spray shape was pulsated regularly. During the pulsated state of the spray with a mechanical pulsator, the spray characteristics, such as spray angle and liquid film thickness in orifice exit, were measured and compared with those in steady state without a mechanical pulsator. Though the mean injection pressure was fixed in the steady and fluctuating state, there were some differences in all measured values, i.e. liquid film thickness and spray cone angle, between both states.

  • PDF

Catalytic Reactor of Hydrogen Peroxide for a Micro Thruster (마이크로 추력장치용 과산화수소 촉매 반응기)

  • Lee, Dae-Hun;Cho, Jeong-Hun;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.237-240
    • /
    • 2002
  • Micro catalytic reactors are alternative propulsion device that can be used on a nano satellite. When used with a monopropellant, $H_2O_2$, a micro catalytic reactor needs only one supply system as the monopropellant reacts spontaneously on contact with catalyst and releases heat without external ignition, while separate supply lines for fuel and oxidizer are needed for a bipropellant rocket engine. Additionally, $H_2O_2$ is in liquid phase at room temperature, eliminating the burden of storage for gaseous fuel and carburetion of liquid fuel. In order to design a micro catalytic reactor, an appropriate catalyst material must be selected. Considering the safety concern in handling the monopropellants and reaction performance of catalyst, we selected hydrogen peroxide at volume concentration of 70% and perovskite redox catalyst of lantanium cobaltate doped with strondium. Perovskite catalysts are known to have superior reactivity in reduction-oxidation chemical processes. In particular, lantanium cobaltate has better performance in chemical reactions involving oxygen atom exchange than other perovskite materials. In the present study, a process to prepare perovskite type catalyst, $La_{0.8}Sr_{0.2}CoO_3$, and measurement of its propellant decomposition performance in a test reactor are described.

  • PDF

Reaction of an Insensitive Munitions(IM) Igniter for Solid Propulsion System (고체 추진기관 둔감화 점화 장치의 반응)

  • Ryu, Byungtae;Lee, Dohyung;Ryoo, Baekneung;Choi, Hongseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.85-91
    • /
    • 2012
  • This paper describes the results of study on reaction of insensitive igniter in which a pyrosensor is automatically sensing the rate of risk of fire or explosion of solid rocket motor exposed to an unexpected fire and makes the rocket motor burn itself safely. The Slow Cook Off(SCO) test following the regulation of MIL-STD-2105D was carried out with a rocket motor loaded with HTPB propellant, in which a thermal pyrosensor igniter was installed. The auto-ignition temperature measured was approximately $140^{\circ}C$ and it corresponded to Type V(Burning) reaction in SCO test, while the temperature by Kissinger equation was calculated to be $165.5^{\circ}C$.

Study on Film Cooling Characteristic of a Liquid Rocket Engine using Hydrogen Peroxide/Kerosene (과산화수소/케로신 액체로켓엔진의 막냉각 특성에 관한 연구)

  • Choi, Yu-Ri;Jeon, Jun-Su;Chae, Byoung-Chan;Min, Ji-Hong;Ko, Young-Sung;Kim, Sun-Jin;Kim, Yoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.601-604
    • /
    • 2010
  • An experimental study was carried out to investigate the effect of film cooling in a liquid rocket engine using Hydrogen peroxide/Kerosene as propellants. The heat fluxes were calculated by the measured wall temperatures on the axial direction of thrust chamber for mass flow rate of coolant and different type of film cooling rings. The flow rate of coolant was 0~20 percent of the total propellant.

  • PDF

A study on spray characteristics of the triplet impinging stream type injector for liquid rocket (액체 로켓용 충돌형 Triplet 인젝터의 미립화 특성에 관한 연구)

  • Park, Sung-Young;Kim, Seon-Jin;Park, Seung-Woon;Kim, Yoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1005-1014
    • /
    • 1996
  • An experimental investigation has been carried out to examine the influence of injector design variables and operating conditions on the resultant drop size for triplet impinging streams injectors. The variables studied in this investigation are pressure drop, impinging angle, orifice length to diameter ratio, and impinging point distance. Droplet-size data are obtained using water as the propellant simulant by Malvern Particle Analyzer System. Drop size decreases with increasing impinging angle and pressure drop while other injector parameters remain constant at the same point. But it is found that there is no noticeable droplet-size change which results from change in orifice length to diameter ratio or impinging point distance within the investigated range.

Moment Evaluations of Gimbal Expansion Joints for Liquid Rocket Engine Propellant Pipes (액체로켓엔진 배관 김발 신축 이음 모멘트 평가)

  • Yoo, Jaehan;Moon, Ilyoon;Lee, Soo Yong;Choi, Chunghyeon
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.105-110
    • /
    • 2013
  • The gimbal expansion joint for the pipe line of a liquid rocket engine undergoes high pressure and cyclic rotational displacement loadings. In present study, the moment analyses and tests of the internal-type gimbal expansion joint for the engine were performed. The moment components due to spring stiffness, friction and lateral force were obtained using a analytic method and their sums at low and high pressures were compared with the test results. Also, applying a $MoS_2$ dry film lubricant to the pin of a external hinge expansion joint, it is tested that the galling of the pin was removed and the friction coefficient was decreased for low pressures.

Product Assurance of KSLV-II Propulsion System (한국형발사체 추진기관개발에서의 제품보증활동)

  • Cho, Sang Yeon;Seol, Woo Seok;Ko, Jeonghwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.598-602
    • /
    • 2017
  • Korea Aerospace Research Institute has been developing 3-stage launcher KSLV-II, which can inject 1.5-ton satellite into sun synchronous orbit (SSO). For development process, Test Launch Vehicle(TLV) adopting the $2^{nd}$ and $3^{rd}$ stage of KSLV-II will be scheduled to launch in 2018. The propulsion system of TLV is composed of $2^{nd}$ stage engine system (ground type) and propellant supply system including LOX, Kerosene tanks. Until now, system integration of engineering model of TLV and delivery of qualification model have been done. In this paper, the product assurance activities for propulsion system KSLV-II will be illustrated.

  • PDF