• Title/Summary/Keyword: propane

Search Result 778, Processing Time 0.022 seconds

Prediction of Propylene/Propane Separation Behavior of Na-type Faujasite Zeolite Membrane by Using Gravimetric Adsorption (중량식흡착 거동에 기초한 Na형 Faujasite 제올라이트 분리막의 프로필렌/프로페인 분리 거동 예측 연구)

  • Hwang, Juyeon;Min, Hae-Hyun;Park, You-In;Chang, Jong-San;Park, Yong-Ki;Cho, Churl-Hee;Han, Moon-Hee
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.432-443
    • /
    • 2018
  • In this study, propylene/propane separation behavior of Na-type faujasite zeolite membranes is predicted by observing gravimetric adsorptions of propylene and propane on zeolite 13X. The gravimetric adsorptions were measured by using a magnetic suspension balance (MSB) at temperatures of 323, 343, 363 K and a pressure range of 0.02-1 bar. The pressure was increased at 0.1 bar intervals. As adsorption temperature increased, adsorptions of propylene and propane decreased and propylene/propane adsorption selectivity increased. Also, the diffusion coefficients of propylene and propane were increased as the adsorption temperature increased, following the Arrhenius equation. The maximum propylene/propane diffusion selectivity was 0.9753 at 323 K. The perm-selectivity was calculated from the adsorption data of zeolite 13X and compared with the perm-selectivity measured in the single gas permeation experiment for the Na-type faujasite zeolite membrane. The maximum values for the calculated and measured perm-selectivities were observed at a temperature of 323 K. It could be concluded that the prediction of propylene/propane separation of surface diffusion-based membrane by using gravimetric adsorption data is reasonable. Therefore, it is expected that this prediction method can be applied to the screening of adsorption-based microporous membrane for propylene/propane separation.

메탄 하이드레이트의 부존 가능성과 평형조건

  • 류병재;허대기;선우돈;정태진;김현태;김세준;이호섭
    • 한국석유지질학회:학술대회논문집
    • /
    • spring
    • /
    • pp.56-65
    • /
    • 1998
  • Methane hydrate is ice-like solid compound consisting of mainly methane and water, and is stable under specific low temperature and high pressure conditions (HSZ : methane hydrate stability zone) that occurs in permafrost regions and in the ocean floor sediments. Geophysical survey was implemented in the southern area of the East Sea, and the HSZ of the study area is determined by the temperature, pressure and local heat flow obtained from the survey and well data. In the study area, methane hydrates could exist in the sediments below the water depths of about $300{\cal}m$, and the base of HSZ is about 600m beneath the seafloor. The acoustically blanking zones in the sediment and phenomena of gas seepage were detected from the seismic section. These sediments have the sufficient physical condition for the formation of methane hydrate. The temperature and pressure conditions were experimentally measured for the dissociation of methane and propane hydrates in Pure water. Equilibrium conditions of methane and propane hydrates were obtained in the pressure range up to 19050Kpa and 401.3Kpa. Under same temperature condition, propane hydrate was dissociated at lower pressure than that of methane hydrate.

  • PDF

Propane Dehydrogenation over a Hydrogen Permselective Membrane Reactor

  • Chang, Jong-San;Roh, Hyun-Seog;Park, Min-Seok;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.674-678
    • /
    • 2002
  • The dehydrogenation of propane to propylene has been studied in an isothermal high-temperature shell-and-tube membrane reactor containing a Pd-coated ${\psi}$-Al2O3 membrane and a Pt/K/Sn/Al2O3 packed catalyst . A tubular Pd-coated ${\psi}$-Al2O3 membrane was prepared by an electroless plating method. This membrane showed high hydrogen to nitrogen permselectivities (PH2N2 = 10-50) at 400 $^{\circ}C$ and 500 $^{\circ}C$ with various transmembrane pressure drops. The employment of a membrane reactor in the dehydrogenation reaction, which selectively separates hydrogen from the reaction mixture along the reaction path, can greatly increase the conversion and enable operation of the reactor at lower temperatures. High hydrogen permselectivity has been confirmed as a key factor in determining the reactor performance of conversion enhancement.

Performance and Emissions Characteristics of a Converted Liquefied Petroleum Gas (LPG) Engine with Mixer and Liquid Propane Injection (LPi) System

  • Choi, Gyeung-Ho;Kim, Jin-Ho;Cho, Ung-Lae;Chung, Yon-Jong;Han, Sung-Bin
    • Journal of Energy Engineering
    • /
    • v.14 no.3 s.43
    • /
    • pp.187-193
    • /
    • 2005
  • In this study, the performance and emission characteristics of a liquefied petroleum gas (LPG) engine converted from a diesel engine were examined by using mixer system and liquid propane injection (LPi) system. A compression ratio of 21 for the base diesel engine, was modified to 8, 8.5, 9 and 9.5. The engine performance and emissions characteristics are analyzed by investigating engine power, brake mean effective pressure (BMEP), brake specific fuel consumption (BSFC), volumetric efficienry, CO, THC and NOx. Experimental results showed that the LPi system generated higher power and lower emissions than the conventional mixer fuel supply method.

Stereoselective Ligand Exchange Reaction of trans-dichlorocobalt(III) complex contained SS-epm and racemi propane-1,2-diamine (SS-epm이 배위된 trans-dichlorocobalt(III) 착물과 라세미 propane-1,2-diamine과의 입체선택적 리간드 치환반응)

  • Kim, Dong-Yeub
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.77-82
    • /
    • 2000
  • The stereoselective ligand exchange reaction of trans-$[Co(SS-epm)Cl_2]^+$ and racemic propane-1,2-diamine (rac-pn) produces the complex that is identified as $[CO(N)_6]^{3+}$ type of $[Co(SS-epm)(pn)]^{3+}$ by absorption spectrum. It is conceivable that the reaction mechanism involves substitution and isomerization. The calculated and experimentally determined ratios of the complexed enantiomeric substrates at equilibrium were as follows: $[Co(SS-epm)(pn)]^{3+}$,calcd 32 % / 68 %, exptl 19 % / 81 % R-pn / S-pn. It has been shown that the employment of molecular mechanics calculations as a predictive tool may lead to the design of chiral complexes that may be applied to the separation of racemic mixtures of simple bidentate ligands.

  • PDF

Numerical Study on the Effect of Coflow Jet Velocity on Lifted Flame in Propane Jet (동축류 속도에 따른 프로판 제트의 부상화염 특성에 관한 수치해석적 연구)

  • Doh, Jae-Il;Kim, Kil-Nam;Chun, Kang-Woo;Kim, Jun-Hong;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.215-220
    • /
    • 2005
  • When the fuel jet velocity is smaller than coflow velocity, the trend of decreasing liftoff height of highly diluted propane lifted flame with coflow velocity is observed experimentally. To investigate the mechanism of decreasing liftoff height with coflow velocity, lifted flames in propane jet has been studied numerically. Using one-step overall reaction mechanism the liftoff heights have been calculated for four cases of coflow velocity. The simulation agrees qualitatively with experimental observation that the liftoff height decreases with coflow velocity. As coflow velocity increases, the streamlines between nozzle and lifted flame diverge in radial direction due to the difference of momentum between coflow jet and fuel jet such that the local flow velocity ahead of lifted flame base decreases resulting in decrease of the liftoff height with coflow velocity.

  • PDF

Operating Pressure Conditions for Non-Explosion Hazards in Plants Handling Propane Gas

  • Choi, Jae-Young;Byeon, Sang-Hoon
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.493-497
    • /
    • 2020
  • Hazardous area classification is designed to prevent chemical plant explosions in advance. Generally, the duration of the explosive atmosphere is used for zone type classification. Herein, IEC code, a quantitative zone type classification methodology, was used to achieve Zone 2 NE, which indicates a practical non-explosion condition. This study analyzed the operating pressure of a vessel handling propane to achieve Zone 2 NE by applying the IEC code via MATLAB. The resulting zone type and hazardous area grades were compared with the results from other design standards, namely API and EI codes. According to the IEC code, the operating pressure of vessels handling propane should be between 101325-116560.59 Pa. In contrast, the zone type classification criteria used by API and EI codes are abstract. Therefore, since these codes could interpret excessively explosive atmospheres, care is required while using them for hazardous area classification design.

Stabilization of Lean Premixed Flames by a Heated Cylindrical Rod;The Role of Heat Flux (가열된 원통형보염기에 의한 희박 예혼합화염의 보염;열유속의 역할)

  • Seo, Dong-Kyu;Lee, Won-Nam
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1372-1377
    • /
    • 2003
  • The stabilization of propane/air lean premixed flames by a heated cylindrical rod is investigated experimentally. The flame stability limits, heat flux, surface temperatures, equivalence ratios, and mixture velocities are measured in order to understand the role of heat flux or surface temperature on the flame stabilization of lean premixed flames. The flame stability limits are lowered by a heated cylindrical rod and extended even below the flammability limit of propane/air mixture when sufficient heat flux is provided. The flame stability limit decreases with the increase of heat flux or surface temperature and decreases with the higher mixture velocity. The diameter of cylindrical rod, however, dose not significantly affect the flame stability limit. The laminar flame speed has been measured for ultra lean propane/air premixed flames. The flame stabilization by a heated cylindrical rod provides the useful tool for the measurement of flame speed under very fuel-lean conditions.

  • PDF

Study on Heat Transfer Characteristics of Evaporator with Horizontal Small Diameter Tubes using Natural Refrigerant Propane (자연냉매 프로판을 이용한 수평세관 증발기의 열전달 특성에 관한 연구)

  • Ku, H.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2010
  • The evaporation heat transfer characteristics of propane(R-290) in horizontal small diameter tubes were investigated experimentally. The test tubes have inner diameters of 1 mm and 4 mm. Local heat transfer coefficients were measured at heat fluxes of 12, $24\;kW/m^2$, mass fluxes of 150, $300\;kg/m^2s$, and evaporation temperature of $15^{\circ}C$. The experimental results showed that the evaporation heat transfer coefficient of R-290 has an effect on heat flux, mass flux, tube diameter, and vapor quality. The evaporation heat transfer of R-290 has an influenced on nucleate boiling at low quality and convective boiling at high quality. The evaporation heat transfer coefficient of R-290 increases with decreasing inner tube diameter. And the evaporation heat transfer coefficient of R-290 is about 1~3 times higher than that of R-134a.

Condensing heat transfer characteristics of hydrocarbon refrigerants in a horizontal tube (탄화수소 냉매의 수평 원관내 응축열전달 특성)

  • Jang, Yeong-Su;Kim, Min-Su;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1656-1667
    • /
    • 1997
  • Condensing heat transfer characteristics of hydrocarbon refrigerants are experimentally investigated. Single component hydrocarbon refrigerants (propane, isobutane, butane and propylene) and binary mixtures of propane/isobutane and propane/butane are considered as test fluids. Local condensing heat transfer coefficients of selected refrigerants are obtained from overall conductance measurement. Average heat transfer coefficients at different mass fluxes and heat transfer rates are shown and compared with those of R22. Pure hydrocarbon refrigerants have higher values of heat transfer coefficient than R22. It is also found that there is a heat transfer degradation for hydrocarbon mixtures due to composition variation during condensation. Measured condensing heat transfer coefficients are compared with predicted values by available correlations. An empirical correlation for pure and mixed hydrocarbon is developed, and it shows good agreement with experimental data.