• Title/Summary/Keyword: propane

Search Result 778, Processing Time 0.024 seconds

Phase Equilibrium Conditions of Gas Hydrates for Natural Gas Solid Transportation and Storage (천연가스 고체수송 및 저장을 위한 가스 하이드레이트 상평형 조건에 대한 연구)

  • Jeon, Yong-Han;Kim, Jong-Yoon;Kim, Chong-Bo;Kim, Nam-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.266-273
    • /
    • 2008
  • Natural gas hydrates are ice-like solid substances, which are composed of water and natural gas, mainly methane. They have three kinds of crystal structures of five polyhedra formed by hydrogen-bonded water molecules, and are stable at high pressures and low temperatures. They contain large amounts of organic carbon and widely occur in deep oceans and permafrost regions. Therefore, they are expected as a potential energy resource in the future. Especially, $1m^3$ natural gas hydrate contains up to $172Nm^3$ of methane gas, de pending on the pressure and temperature of production. Such large volumes make natural gas hydrates can be used to store and transport natural gas. In this study, three-phase equilibrium conditions for forming natural gas hydrate were numerically obtained in pure water and single electrolyte solution containing 3 wt% NaCl. The results show that the predictions match the previous experimental values very well, and it was found that NaCl acts as an inhibitor. Also, help gases such that ethane, propane, i-butane, and n-butane reduce the hydrate formation pressure at the same temperature.

A Study of the Reaction Characteristics on Hydrocarbon Selective Catalytic Reduction of NOx Over Various Noble Metal Catalysts (다양한 귀금속 촉매를 이용한 NOx의 탄화수소 선택적촉매환원 반응 특성에 관한 연구)

  • Kim, Sung-Su;Jang, Du-Hun;Hong, Sung-Chang
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.225-230
    • /
    • 2011
  • Characteristics of hydrocarbon selective catalytic reduction of NOx using various noble metal catalysts were investigated. The best active metal is Pt, supports are $CeO_2$ and $TiO_2$ by strong interactions between active metals, and 55% of conversion rate of NOx is shown. Pd, Rh and Ag catalysts presented a conversion of less than 20% as active metals, and supports also showed the poor activity compared to $SiO_2$ and $ZrO_2$. Experiments were performed with different types of reducing agents, amount, concentration of oxygen and space velocity in order to investigate the performance of catalysts according to operating conditions. The results confirm that the methane is better than propane as a reducing agent, and as the ratio of methane/nitrogen oxide increases, the catalytic activity increased, as the concentration of oxygen increases and space velocity decreases, the performance of catalysts increased.

The Effect of Ethanol on the Physical Properties of Neuronal Membranes

  • Bae, Moon-Kyoung;Jeong, Dong-Keun;Park, No-Soo;Lee, Cheol-Ho;Cho, Bong-Hye;Jang, Hye-Ock;Yun, Il
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.356-364
    • /
    • 2005
  • Intramolecular excimer formation of 1,3-di(1-pyrenyl) propane(Py-3-Py) and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) were used to evaluate the effect of ethanol on the rate and range of lateral and rotational mobilities of bulk bilayer structures of synaptosomal plasma membrane vesicles (SPMVs) from the bovine cerebral cortex. Ethanol increased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in the SPMVs. Selective quenching of both DPH and Py-3-Py by trinitrophenyl groups was used to examine the range of transbilayer asymmetric rotational mobility and the rate and range of transbilayer asymmetric lateral mobility of SPMVs. Ethanol increased the rotational and lateral mobility of the outer monolayer more than of the inner one. Thus ethanol has a selective fluidizing effect within the transbilayer domains of the SPMVs. Radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py was used to examine both the effect of ethanol on annular lipid fluidity and protein distribution in the SPMVs. Ethanol increased annular lipid fluidity and also caused membrane proteins to cluster. These effects on neuronal membranes may be responsible for some, though not all, of the general anesthetic actions of ethanol.

A development of neural-network based gas recognition system using sensor array (센서 어레이를 이용한 신경망 기반의 가스 인식 시스템 개발)

  • 김영진;정종혁;강상욱;조영창
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.06a
    • /
    • pp.356-360
    • /
    • 2002
  • Polluting the air with such pollutants as CO, H₂S and SO₂, industrial development huts increased the danger of gas toxication. Futhermore, as the: living standard goes higher, the consumption of explosive hydrocarbonic gases such as butane(C₄H/sub 10/) or propane(C₃H/sub 8/) has been soaring, which results in the danger of a gas explosion. As measures to cope with such dangers, the development of highly sensitive gas sensors, gas detectors adopting gas-sensing technologies, and gas recognition systems are urgently required. The objective of the present research is to develop a gas recognition system that is capable of identifying specific types of selected gases by formulating a semiconductor-typed gas sensor array, which not only improves the selectivity of semiconductor-typed gas sensors but also minimizes the erect of drifts on a single sensor signal, and applying the input pattern data of gases detected by the array to a neural network.

  • PDF

Preparation and Characterization of Highly Permeable Facilitated Olefin Transport Nanocomposite Membrane Utilizing 7,7,8,8-tetracyanoquinodimethane (7,7,8,8-Tetracyanoquinodimethane를 활용한 고투과성 올레핀 촉진수송 나노복합체 분리막 제조 및 특성 분석)

  • Hwang, Jeonghyun;Lee, Eun Yong;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.417-422
    • /
    • 2014
  • The poly(ethylene oxide) (PEO)/Ag Nanoparticles (NPs)/7,7,8,8-Tetracyanoquinodimethane (TCNQ) membrane was fabricated to obtain highly permeable facilitated olefin transport nanocomposite membrane, compared with PEO/Ag NPs/p-Benzoquinone (p-BQ) membrane. Polymer matrix, PEO and silver nanoparticle precursor $AgBF_4$ were fixed at 1 : 0.4 mole ratio and electron acceptor TCNQ content was controlled variously. And the best olefin separation performance was obtained at 1/0.4/0.004 mole ratio, and long-term separation performance was measured at this ratio. As a result, mixed-gas permeance decreased from 23 to 6 GPU, and selectivity decreased from 6 to 2 (propylene/propane) after 32 hours.

The Effect of n-Alkanols on the Lateral Diffusion of Synaptosomal Plasma Membrane Vesicles Isolated from Bovine Cerebral Cortex (n-Alkanols가 소의 대뇌피질로부터 분리한 Synaptosomal Plasma Membrane Vesicles의 측방확산운동 범위와 속도에 미치는 영향)

  • Chung, In-Kyo;Kang, Jung-Sook;Yun, Il
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.157-163
    • /
    • 1993
  • Intramolecular excimer formation with the fluorescent probe 1,3-di(1-pyrenyl)propane (Py-3-Py) was used to investigate the effects of methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol and 1-decanol on the lateral diffusion of synaptosomal plasma membrane vesicles isolated from bovine cerebral cortex (SPMV). The n-alkanols increased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in the SPMV. In a dose-dependent manner, n-alkanols increased lateral diffusion of hydrocarbon region of bulk (inner+outer monolayers) SPMV lipid bilayers, and the potencies of n-alkanols up to l-nonanol increased with carbon chain length. It appears that the potencies in bilayer fluidization due to the lateral diffusion increase by 1 order of magnitude as the carbon chain length increases by two carbon atoms. The cut-off phenomenon was reached at 1-decanol, where further increase in hydrocarbon length resulted in a decrease in pharmacological activity.

  • PDF

A Study on the Methane Hydrate Formation Using Natural Zeolite (천연제올라이트를 이용한 메탄 하이드레이트 생성에 대한 연구)

  • Park, Sung-Seek;An, Eoung-Jin;Kim, Dae-Jin;Jeon, Yong-Han;Kim, Nam-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.4
    • /
    • pp.259-264
    • /
    • 2011
  • Gas hydrate is formed by physical binding between water molecule and gas such as methane, ethane, propane, or carbon dioxide, etc., which is captured in the cavities of water molecule under the specific temperature and pressure. $1\;m^3$ hydrate of pure methane can be decomposed to the methane gas of $172\;m^3$ and water of $0.8\;m^3$ at standard condition. If this characteristic of hydrate is reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore, the hydrate is considered to be a great way to transport and store of natural gas in large quantity. Especially the transportation cost is known to be 18~25% less than the liquefied transportation. However, when methane gas hydrate is artificially formed, its reaction time may be too long and the gas consumption in water becomes relatively low, because the reaction rate between water and gas is low. Therefore, for the practical purpose in the application, the present investigation focuses on the rapid production of hydrates and the increment of the amount of captured gas by adding zeolite into pure water. The results show that when the zeolite of 0.01 wt% was added to distilled water, the amount of captured gas during the formation of methane hydrate was about 4.5 times higher than that in distilled water, and the methane hydrate formation time decreased at the same subcooling temperature.

Effects of Dopamine.HCI on Structural Parameters of Bovine Brain Membranes

  • Bae, Moon-Kyoung;Huh, Min-Hoi;Lee, Seung-Woo;Kang, Hyun-Gu;Pyun, Jae-Ho;Kwak, Myeong-Hee;Jang, Hye-Ock;Yun, Il
    • Archives of Pharmacal Research
    • /
    • v.27 no.6
    • /
    • pp.653-661
    • /
    • 2004
  • Fluorescence probes located in different membrane regions were used to evaluate the effect of dopamine$.$HCI on the structural parameters (transbilayer lateral mobility, annular lipid fluidity, protein distribution, and thickness of the lipid bilayer) of synaptosomal plasma membrane vesicles (SPMV), which were obtained from the bovine cerebral cortex. An experimental procedure was used based on selective quenching of 1,3-di(1-pyrenyl)propane (Py-3-Py) by trinitrophenyl groups, and radiationless energy transfer from the tryptophan of membrane pro-teins to Py-3-Py and energy transfer from Py-3-Py monomers to 1-anilinonaphthalene-8-sulfonic acid (ANS) was also utilized. Dopamine$.$HCI increased both the bulk lateral mobility and annular lipid fluidity, and it had a greater fluidizing effect on the inner monolayer than on the outer monolayer. Furthermore, the drug had a clustering effect on membrane proteins.

Binding Modes of New Bis-Ru(II) Complexes to DNA: Effect of the Length of the Linker

  • Kwon, Byung-Hyang;Choi, Byung-Hoon;Lee, Hyun-Mee;Jang, Yoon-Jung;Lee, Jae-Cheol;Kim, Seog-K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1615-1620
    • /
    • 2010
  • Bis-[dipyrido[3,2-$\alpha$:2',3'-c]phenazine)$_2$(1,10-phenanthroline)$_2Ru_2$]$^{2+}$ complexes (bis-Ru(II) complexes) tethered by linkers of various lengths were synthesized and their binding properties to DNA investigated by normal absorption and linear dichroism spectra, and fluorescence techniques in this study. Upon binding to DNA, the bis-Ru(II) complex with the longest linker (1,3-bis-(4-pyridyl)-propane), exhibited a negative $LD^r$ signal whose intensity was as large as that in the DNA absorption region, followed by a complicate $LD^r$ signal in the metal-to-ligand charge transfer region. The luminescence intensity of this bis-Ru(II) complex was enhanced. The observed $LD^r$ and luminescence results resembled that of the [Ru(1,10-phenanthroline)$_2$ dipyrido[3,2-$\alpha$:2',3'-c]phenazine]$^{2+}$ complex, whose dipyrido[3,2-$\alpha$:2',3'-c]phenazine (dppz) ligand has been known to intercalate between DNA bases. Hence, it is conclusive that both dppz ligands of the bis-Ru(II) complex intercalate. The binding stoichiometry, however, was a single intercalated dppz per ~ 2.3 bases, which violates the "nearest binding site exclusion" model for intercalation. The length between the two Ru(II) complexes may be barely long enough to accommodate one DNA base between the two dppz ligands, but not for two DNA bases. When the linker was shorter (4,4'-bipyridine or 1,2-bis-(4-pyridyl)-ethane), the magnitude of the LD in the dppz absorption region, as well as the luminescence intensity of both bis-Ru(II) complexes, was half that of the bis-Ru(II) complex bearing a long linker. This observation can be elucidated by a model whereby one of the dppz ligands intercalates while the other is exposed to the aqueous environment.

Safety Enhancement of LPG Terminal by LOPA & SIF Method (LOPA 및 SIF기법에 의한 LPG 인수기지의 안전성향상에 대한 연구)

  • Lee, Il Jae;Kim, Rae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.431-439
    • /
    • 2015
  • The methods which decrease the accident hazards of LPG(Liquefied Petroleum Gas) terminal on the basis of butane & propane storage tanks by applying HAZOP(Hazard and Operability), LOPA(Layer of Protection Analysis) and SIL(Safety Integrity Level) are suggested. The accident scenarios were derived by analyzing latent risks through the HAZOP. The scenarios which would have the big damage effect in accidents were selected and then LOPA was assessed by analyzing IPL(Independent Protection Layer) about the correspond accident scenarios. The improved methods were proposed on the basis of level of SIF(Safety Instrumented Functions) as a IPL considering satisfied condition of risk tolerance criteria($1.0{\times}10^{-05}/y$). In addition, The proposed IPLs were basis on the economic analysis. The effect of SIF as a IPL considering the changes of accident frequency was studied in case of the accident scenarios derived from the concerned process.