• 제목/요약/키워드: propagations

검색결과 141건 처리시간 0.023초

Self-Encoded Spread Spectrum and Turbo Coding

  • Jang, Won-Mee;Nguyen, Lim;Hempel, Michael
    • Journal of Communications and Networks
    • /
    • 제6권1호
    • /
    • pp.9-18
    • /
    • 2004
  • Self-encoded multiple access (SEMA) is a unique realization of random spread spectrum. As the term implies, the spreading code is obtained from the random digital information source instead of the traditional pseudo noise (PN) code generators. The time-varying random codes can provide additional security in wireless communications. Multi-rate transmissions or multi-level grade of services are also easily implementable in SEMA. In this paper, we analyze the performance of SEMA in additive white Gaussian noise (AWGN) channels and Rayleigh fading channels. Differential encoding eliminates the BER effect of error propagations due to receiver detection errors. The performance of SEMA approaches the random spread spectrum discussed in literature at high signal to noise ratios. For performance improvement, we employ multiuser detection and Turbo coding. We consider a downlink synchronous system such as base station to mobile communication though the analysis can be extended to uplink communications.

압축성과 상변화를 고려한 사출성형의 충전과정 해석 (Analysis for Filling Stage of Injection Molding Considering Compressibility and Phase Change)

  • 이상찬;박창언;양동열
    • 한국정밀공학회지
    • /
    • 제18권12호
    • /
    • pp.60-65
    • /
    • 2001
  • To simulate the real molding conditions, the effects of phase change and compressibility of the resin were considered in the present investigation. A modified Cross model with either an Arrhenius-type or WLF-type functional form was used for modeling viscosity of the resin. A double-domain Tait equation of state was employed to describe the compressibility of the resin during molding. The energy balance equation including latent-heat dissipation fur semi-crystalline materials was solved in order to predict the solidified layer and temperature profile. Injection molding experiments were carried out using polypropylene(PP) in the present study. Based on the comparison between experiments and simulations, it was found out the predicted pressure distributions and melt front propagations were accurate. Thus it was concluded that the program developed in this study was proved to be useful in simulations of injection molding process.

  • PDF

Studying the effects of CFRP and GFRP sheets on the strengthening of self-compacting RC girders

  • Mazloom, Moosa;Mehrvand, Morteza;Pourhaji, Pardis;Savaripour, Azim
    • Structural Monitoring and Maintenance
    • /
    • 제6권1호
    • /
    • pp.47-66
    • /
    • 2019
  • One method of retrofitting concrete structures is to use fiber reinforced polymers (FRP). In this research, the shear, torsional and flexural strengthening of self-compacting reinforced concrete (RC) girders are fulfilled with glass fiber reinforced polymer (GFRP) and carbon fiber reinforced polymer (CFRP) materials. At first, for verification, the experimental results were compared with numerical modeling results obtained from ABAQUS software version 6.10. Then the reinforcing sheets were attached to concrete girders in one and two layers. Studying numerical results obtained from ABAQUS software showed that the girders stiffness decreased with the propagations of cracks in them, and then the extra stresses were tolerated by adhesive layers and GFRP and CFRP sheets, which resulted in increasing the bearing capacity of the studied girders. In fact, shear, torsion and bending strengths of the girders increased by reinforcing girders with adding GFRP and CFRP sheets. The samples including two layers of CFRP had the maximum efficiencies that were 90, 76 and 60 percent of improvement in shear, torsion and bending strengths, respectively. It is worth noting that the bearing capacity of concrete girders with adding one layer of CFRP was slightly higher than the ones having two layers of GFRP in all circumstances; therefore, despite the lower initial cost of GFRP, using CFRP can be more economical in some conditions.

Initiation and propagation of a crack in the orthopedic cement of a THR using XFEM

  • Gasmi, Bachir;Abderrahmene, Sahli;Smail, Benbarek;Benaoumeur, Aour
    • Advances in Computational Design
    • /
    • 제4권3호
    • /
    • pp.295-305
    • /
    • 2019
  • The sealing cement of total hip arthroplasty is the most widely used binder in orthopedic surgery for anchoring implants to their recipient bones. Nevertheless, this latter remains a fragile material with weak mechanical properties. Inside this material cracks initiate from cavities. These cracks propagate under the effect of fatigue and lead to the failure of this binder and consequently the loosening of the prosthesis. In this context, this work consists to predict the position of cracks initiation and their propagations path using the Extended Finite Element Method (XFEM). The results show that cracks can only be initiated from a sharp edges of an ellipsoidal cavity which the ratio of the minor axis over the major axis is equal to 0.1. A maximum crack length of 19 ?m found for a cavity situated in the proximal zone position under a static loading. All cracks propagate in same(almost) way regardless of the cavity(site of initiation) position and its inclination in the proximal zone.

Seismic Fragility of Steel Piping System Based on Pipe Size, Coupling Type, and Wall Thickness

  • Ju, Bu Seog;Gupta, Abhinav;Ryu, Yonghee
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1200-1209
    • /
    • 2018
  • In this study, a probabilistic framework of the damage assessment of pipelines subjected to extreme hazard scenario was developed to mitigate the risk and enhance design reliability. Nonlinear 3D finite element models of T-joint systems were developed based on experimental tests with respect to leakage detection of black iron piping systems, and a damage assessment analysis of the vulnerability of their components according to nominal pipe size, coupling type, and wall thickness under seismic wave propagations was performed. The analysis results showed the 2-inch schedule 40 threaded T-joint system to be more fragile than the others with respect to the nominal pipe sizes. As for the coupling types, the data indicated that the probability of failure of the threaded T-joint coupling was significantly higher than that of the grooved type. Finally, the seismic capacity of the schedule 40 wall thickness was weaker than that of schedule 10 in the 4-inch grooved coupling, due to the difference in the prohibition of energy dissipation. Therefore, this assessment can contribute to the damage detection and financial losses due to failure of the joint piping system in a liquid pipeline, prior to the decision-making.

On the wave propagations of football game ball after contacting with the player foot

  • Lei Sun;Cancan Wei;Fei Liu;Lijun Wang;Bo Ren
    • Geomechanics and Engineering
    • /
    • 재33권6호
    • /
    • pp.529-542
    • /
    • 2023
  • Wave propagation with high transverse deflection could affect the stability of the ball in its trajectory. For low stiffness balls similar to soccer and volleyball balls, the waves are more noticeable in comparison to other balls like ping-pong ball. On the other hand, the soccer balls are under heavy impact loads from shoots and contacting different objects in the field. The maximum recorded speed of a soccer ball after kicking is the 211 km/hr and the average maximum speed is around 112 km/hr. Therefore, in such speeds the aerodynamic forces become important which are directly related to geometrical shape of the ball. In this regard, the wave propagation in soccer ball is examined in the current study using large deformation shear deformable formulations. Classical relations of stress-strain components are taken into consideration along with minimum total energy principle. The final derived relations were solved by using harmonic differential quadrature method. The results are generally presented ion term of phase velocity as function of different influencing parameters of the materials, geometry and mass of the ball.

Development of FEMAXI-ATF for analyzing PCMI behavior of SiC cladded fuel under power ramp conditions

  • Yoshihiro Kubo;Akifumi Yamaji
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.846-854
    • /
    • 2024
  • FEMAXI-ATF is being developed for fuel performance modeling of SiC cladded UO2 fuel with focuses on modeling pellet-cladding mechanical interactions (PCMI). The code considers probability distributions of mechanical strengths of monolithic SiC (mSiC) and SiC fiber reinforced SiC matrix composite (SiC/SiC), while it models pseudo-ductility of SiC/SiC and propagation of cladding failures across the wall thickness direction in deterministic manner without explicitly modeling cracks based on finite element method in one-dimensional geometry. Some hypothetical BWR power ramp conditions were used to test sensitivities of different model parameters on the analyzed PCMI behavior. The results showed that propagation of the cladding failure could be modeled by appropriately reducing modulus of elasticities of the failed wall element, so that the mechanical load of the failed element could be re-distributed to other intact elements. The probability threshold for determination of the wall element failure did not have large influence on the predicted power at failure when the threshold was varied between 25 % and 75 %. The current study is still limited with respect to mechanistic modeling of SiC failure as it only models the propagation of the cladding wall element failure across the homogeneous continuum wall without considering generations and propagations of cracks.

램파의 분산성과 파 반사가 시간반전과정에 미치는 영향의 이해 (Understanding the Effects of the Dispersion and Reflection of Lamb Waves on a Time Reversal Process)

  • 박현우;김승범;손훈
    • 한국전산구조공학회논문집
    • /
    • 제22권1호
    • /
    • pp.89-103
    • /
    • 2009
  • 이 연구에서는 얇은 판형구조물의 손상탐지에 널리 사용되어오는 램파에 시간반전(time reversal)개념의 적용성을 이론적으로 규명한다. 고전적 시간반전 음향학에 의하면, 센서에서의 출력신호를 시간영역에서 반전 후 재입사시켜 원래의 가진점으로 돌려보내면, 그 가진점에서 원래 입력신호가 복원된다. 그러나 램파에 시간반전과정을 적용하게 되면 램파 고유의 분산성과 판 경계에서의 파 반사로 인해 시간반전성이 복잡한 양상을 띠게 된다. 이러한 램파의 시간반전성을 보다 잘 이해하기 위해 이 연구에서는 램파의 시간반전과정을 이론적으로 규명한다. 특히, 램파의 내부모드분산, 다중모드분산, 그리고 판 경계면에서의 램파의 반사가 시간반전성에 미치는 영향을 정식화하였다 간단한 수치예제를 통해 이 연구에서 제시된 이론적 발견들의 타당성을 검증한다.

캐비테이션 유동해석을 위한 기- 2상 국소균질 모델 -제2보: 기-액 2상 매체중의 고속유동현상 (GAS-LIQUID TWO-PHASE HOMOGENEOUS MODEL FOR CAVITATING FLOW -Part II. HIGH SPEED FLOW PHENOMENA IN GAS-LIQUID TWO-PHASE MEDIA)

  • 신병록;박선호;이신형
    • 한국전산유체공학회지
    • /
    • 제19권3호
    • /
    • pp.91-97
    • /
    • 2014
  • A high resolution numerical method aimed at solving cavitating flow was proposed and applied to gas-liquid two-phase shock tube problem with arbitrary void fraction. The present method with compressibility effects employs a finite-difference 4th-order Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL TVD scheme. The Jacobian matrix from the inviscid flux of constitute equation is diagonalized analytically and the speed of sound for the two-phase media is derived by eigenvalues. So that the present method is appropriate for the extension of high order upwind schemes based on the characteristic theory. By this method, a Riemann problem for Euler equations of one dimensional shock tube was computed. Numerical results of high speed flow phenomena such as detailed observations of shock and expansion wave propagations through the gas-liquid two-phase media and some data related to computational efficiency are made. Comparisons of predicted results and solutions at isothermal condition are provided and discussed.

Strengthened and flexible pile-to-pilecap connections for integral abutment bridges

  • Lee, Jaeha;Kim, WooSeok;Kim, Kyeongjin;Park, Soobong;Jeong, Yoseok
    • Steel and Composite Structures
    • /
    • 제20권4호
    • /
    • pp.731-748
    • /
    • 2016
  • Pile-to-pilecap connection performance is important as Integral abutment bridges (IABs) have no expansion joints and their flexible weak-axis oriented supporting piles take the role of the expansion joint. This connection may govern the bridge strength and the performance against various lateral loads. The intention of this study is to identify crack propagation patterns when the pile-to-pilecap connection is subjected to lateral loadings and to propose novel connections for improved performance under lateral loadings. In this study, eight different types of connections were developed and modeled, using Abaqus 6.12 to evaluate performances. Three types were developed by strengthening the connections using rebar or steel tube: (i) PennDOT specification; (ii) Spiral rebar; and (iii) HSS tube. Other types were developed by softening the connections using shape modifications: (i) cylindrical hole; (ii) reduced flange; (iii) removed flange; (iv) extended hole; and (v) slot hole connection types. The connections using the PennDOT specification, HSS tube, and cylindrical hole were shown to be ineffective in the prevention of cracks, resulting in lower structural capacities under the lateral load compared to other types. The other developed connections successfully delayed or arrested the concrete crack initiations and propagations. Among the successful connection types, the spiral rebar connection allowed a relatively larger reaction force, which can damage the superstructure of the IABs. Other softened connections performed better in terms of minimized reaction forces and crack prevention.