• Title/Summary/Keyword: propagation equation

Search Result 555, Processing Time 0.024 seconds

Dispersion-corrected Finite Element Method for the Stress Wave Propagation (응력파 전파 수치모의를 위한 유한요소법의 분산오차 저감에 관한 연구)

  • Hwang, In-Ho;Choi, Don-Hee;Hong, Sang-Hyun;Lee, Jong-Seh
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.39-44
    • /
    • 2008
  • Stress wave propagation plays an important role in many engineering problems for reducing industrial noise and vibrations. In this paper, the dispersion-corrected finite element model is proposed for reducing the dispersion error in simulation of stress wave propagation. At eliminating the numerical dispersion error arising from the numerical simulation of stress wave propagation, numerical dispersion characteristics of the wave equation based finite element model are analyzed and some dispersion control scheme are proposed. The validity of the dispersion correction techniques is demonstrated by comparing the numerical solutions obtained using the present techniques.

  • PDF

FDTD Analysis of Electromagnetic Wave Propagation in an Inhomogeneous Ionosphere under Arbitrary-Direction Geomagnetic Field

  • Kweon, Jun-Ho;Park, Min-Seok;Cho, Jeahoon;Jung, Kyung-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.212-214
    • /
    • 2018
  • The finite-difference time-domain (FDTD) model was developed to analyze electromagnetic (EM) wave propagation in an inhomogeneous ionosphere. The EM analysis of ionosphere is complicated, owing to various propagation environments that are significantly influenced by plasma frequency, cyclotron frequency, and collision frequency. Based on the simple auxiliary differential equation (ADE) technique, we present an accurate FDTD algorithm suitable for the EM analysis of complex phenomena in the ionosphere under arbitrary-direction geomagnetic field. Numerical examples are used to validate our FDTD model in terms of the reflection coefficient of a single magnetized plasma slab. Based on the FDTD formulation developed here, we investigate EM wave propagation characteristics in the ionosphere using realistic ionospheric data for South Korea.

The influence of initial stress on wave propagation and dynamic elastic coefficients

  • Li, Xibing;Tao, Ming
    • Geomechanics and Engineering
    • /
    • v.8 no.3
    • /
    • pp.377-390
    • /
    • 2015
  • The governing equations of wave propagation in one dimension of elastic continuum materials are investigated by taking the influence of the initial stress into account. After a short review of the theory of elastic wave propagation in a rock mass with an initial stress, results indicate that the initial stress differentially influences P-wave and S-wave propagation. For example, when the initial stress is homogeneous, for the P-wave, the initial stress only affects the magnitude of the elastic coefficients, but for the S-wave, the initial stress not only influences the elastic coefficients but also changes the governing equation of wave propagation. In addition, the P-wave and S-wave velocities were measured for granite samples at a low initial stress state; the results indicate that the seismic velocities increase with the initial stress. The analysis of the previous data of seismic velocities and elastic coefficients in rocks under ultra-high hydrostatic initial stress are also investigated.

A fracture mechanics evaluation on the fatigue crack propagation at spot welded aluminum joint in passenger car body (스폿용접된 자동차 차체용 알루미늄 박판의 피로균열진전의 파괴역학적 평가)

  • 박인덕;남기우;강석봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.20-28
    • /
    • 1997
  • The fatigue crack propagation properties and fatigue life of two kinds of Al body panel for automobile were examined experimentally by using the plate specimen and the single spot welding specimen. The fatigue limit of spot welding specimens was lower than that of a plate specimen. The fatigue limit was similar in two kinds of spot welding specimen. The shape and size of crack propagation were observed and measured on beach mark of fracture surface. The crack propagation of surface crack specimen showed almost same tendency to that of a thick plate as almost semi-elliptical. In spot welding specimen, the fatigue crack occurred in inside surface of nugget area was almost semi-elliptical. The crack growth rate can be explained using equation of stress intensity factors.

  • PDF

Wave propagation in a FG circular plate via the physical neutral surface concept

  • She, Gui-Lin;Ding, Hao-Xuan;Zhang, Yi-Wen
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.225-232
    • /
    • 2022
  • In this paper, the physical neutral surface concept is applied to study the wave propagation of functionally graded (FG) circular plate, the wave equation is derived by Hamiltonian variational principle and the first-order shear deformation plate model. Then, we convert the equations to dimensionless equations. The exact solution of wave propagation problem is obtained by Laplace integral transformation, the first order Hankel integral transformation and the zero order Hankel integral transformation. The results obtained by the current model are very close to those obtained in the existing literature, which indicates the correctness and reliability of this study. Moreover, the effects of the functionally graded index parameters and pore volume fraction on the wave propagation are also discussed in detail.

TRAVELLING WAVE SOLUTIONS FOR SOME NONLINEAR EVOLUTION EQUATIONS

  • Kim, Hyunsoo;Choi, Jin Hyuk
    • Korean Journal of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.11-27
    • /
    • 2015
  • Nonlinear partial differential equations are more suitable to model many physical phenomena in science and engineering. In this paper, we consider three nonlinear partial differential equations such as Novikov equation, an equation for surface water waves and the Geng-Xue coupled equation which serves as a model for the unidirectional propagation of the shallow water waves over a at bottom. The main objective in this paper is to apply the generalized Riccati equation mapping method for obtaining more exact traveling wave solutions of Novikov equation, an equation for surface water waves and the Geng-Xue coupled equation. More precisely, the obtained solutions are expressed in terms of the hyperbolic, the trigonometric and the rational functional form. Solutions obtained are potentially significant for the explanation of better insight of physical aspects of the considered nonlinear physical models.

A Study on Cultivation of Stevia rebaudiana Bertoni M. as an Introduced Sweetness Resource Plant in Jeju-do (새로운 감미자원식물 Stevia (Stevia rebaudiana Bertoni M.)의 재배에 관한 연구)

  • 오현도
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.22 no.2
    • /
    • pp.112-120
    • /
    • 1977
  • In Korea. the cultivating standard of stevia is not established yet. Because stevia is across-fertilizing plant. planting a cutting is its available propagation method. This study was made to know the effective propagation growth and adaptability of stevia in Jeju-do, according to the wintering effect and the planting density.

  • PDF

Electrohydrodynamic Analysis of Dielectric Guide Flow Due to Surface Charge Density Effects in Breakdown Region

  • Lee, Ho-Young;Kang, In Man;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.647-652
    • /
    • 2015
  • A fully coupled finite element analysis (FEA) technique was developed for analyzing the discharge phenomena and dielectric liquid flow while considering surface charge density effects in dielectric flow guidance. In addition, the simulated speed of surface charge propagation was compared and verified with the experimental results shown in the literature. Recently, electrohydrodynamics (EHD) techniques have been widely applied to enhance the cooling performance of electromagnetic systems by utilizing gaseous or liquid media. The main advantage of EHD techniques is the non-contact and low-noise nature of smart control using an electric field. In some cases, flow can be achieved using only a main electric field source. The driving sources in EHD flow are ionization in the breakdown region and ionic dissociation in the sub-breakdown region. Dielectric guidance can be used to enhance the speed of discharge propagation and fluidic flow along the direction of the electric field. To analyze this EHD phenomenon, in this study, the fully coupled FEA was composed of Poisson's equation for an electric field, charge continuity equations in the form of the Nernst-Planck equation for ions, and the Navier-Stokes equation for an incompressible fluidic flow. To develop a generalized numerical technique for various EHD phenomena that considers fluidic flow effects including dielectric flow guidance, we examined the surface charge accumulation on a dielectric surface and ionization, dissociation, and recombination effects.

Higher Order Parabolic Equation Modeling Using Galerkin's Method (Galerkin방법을 이용한 고차 포물선 방정식 수중음 전달 해석)

  • 이철원;성우제;정문섭
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.71-77
    • /
    • 1999
  • Exact forward modeling of acoustic propagation is crucial in MFP such as inverse problems and various other acoustic applications. As acoustic propagation in shallow water environments become important, range dependent modeling has to be considered of which PE method is considered as one of the most accurate and relatively fast. In this paper higher order numerical rode employing the PE method is developed. To approximate the depth directional operator, Galerkin's method is used with partial collocation to lessen necessary calculations. Linearization of tile depth directional operator is achieved via expansion into a multiplication form of (equation omitted) approximation. To approximate the range directional equation, Crank-Nicolson's method is used. Final1y, numerical self stater is employed. Numerical tests are performed for various occan environment scenarios. The results of these tests are compared to exact solutions, OASES and RAM results.

  • PDF

A new approach for calculation of the neutron noise of power reactor based on Telegrapher's theory: Theoretical and comparison study between Telegrapher's and diffusion noise

  • Bahrami, Mona;Vosoughi, Naser
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.681-688
    • /
    • 2020
  • The telegrapher's theory was used to develop a new formulation for the neutron noise equation. Telegrapher's equation is supposed to demonstrate a more realistic approximation for neutron transport phenomena, especially in comparison to the diffusion theory. The physics behind such equation implies that the signal propagation speed is finite, instead of the infinite as in the case of ordinary diffusion. This paper presents the theory and results of the development of a new method for calculation of the neutron noise using the telegrapher's equation as its basis. In order to investigate the differences and strengths of the new method against the diffusion based neutron noise, a comparison was done between the behaviors of two methods. The neutron noise based on SN transport considered as a precision measuring point. The Green's function technique was used to calculate the neutron noise based on telegrapher's and diffusion methods as well as the transport. The amplitude and phase of Green's function associated with the properties of the medium and frequency of the noise source were obtained and their behavior was compared to the results of the transport. It was observed, the differences in some cases might be considerable. The effective speed of propagation for the noise perturbations were evaluated accordingly, resulting in considerable deviations in some cases.