In this paper, we propose a hybrid acoustic and pronunciation model adaptation method based on context dependency for Korean-English speech recognition. The proposed method is performed as follows. First, in order to derive pronunciation variant rules, an n-best phoneme sequence is obtained by phone recognition. Second, we decompose each rule into a context independent (CI) or a context dependent (CD) one. To this end, it is assumed that a different phoneme structure between Korean and English makes CI pronunciation variabilities while coarticulation effects are related to CD pronunciation variabilities. Finally, we perform an acoustic model adaptation and a pronunciation model adaptation for CI and CD pronunciation variabilities, respectively. It is shown from the Korean-English speech recognition experiments that the average word error rate (WER) is decreased by 36.0% when compared to the baseline that does not include any adaptation. In addition, the proposed method has a lower average WER than either the acoustic model adaptation or the pronunciation model adaptation.
To eliminate ambiguities in the existing methods to simplify Chinese pronunciation learning, we propose a model that can predict the pronunciation of Chinese characters automatically. The proposed model relies on a statistical machine translation (SMT) framework. In particular, we consider the components of Chinese characters as the basic unit and consider the pronunciation prediction as a machine translation procedure (the component sequence as a source sentence, the pronunciation, pinyin, as a target sentence). In addition to traditional features such as the bidirectional word translation and the n-gram language model, we also implement a component similarity feature to overcome some typos during practical use. We incorporate these features into a log-linear model. The experimental results show that our approach significantly outperforms other baseline models.
The purpose of this paper is to show the tendency of evaluators in the pronunciation evaluation of English utterances. The tendency was visualized using the evaluation model of English pronunciation proposed in [1]. One hundred fifty female university students and four evaluators participated in the study. Students read eight English sentences aloud as evaluators evaluated English pronunciation by their own criteria. The models based on their pronunciation evaluation proved to be efficient in showing their evaluation tendency in terms of the fundamental frequency, intensity, segmental durations, and segmental spectra as compared to those of the five native speakers of English chosen for building the models. However, human evaluators were not always consistent in their evaluation and sometimes gave conflicting scores to the same students.
In this paper, we describe a morpheme-based pronunciation lexicon useful for Korean LVCSR. The phonemic-context-dependent multiple pronunciation lexicon improves the recognition accuracy when cross-morpheme pronunciation variations are distinguished from within-morpheme pronunciation variations. Since adding all possible pronunciation variants to the lexicon increases the lexicon size and confusability between lexical entries, we have developed a lexicon pruning scheme for optimal selection of pronunciation variants to improve the performance of Korean LVCSR. By building a proposed pronunciation lexicon, an absolute reduction of $0.56\%$ in WER from the baseline performance of $27.39\%$ WER is achieved by cross-morpheme pronunciation variations model with a phonemic-context-dependent multiple pronunciation lexicon. On the best performance, an additional reduction of the lexicon size by $5.36\%$ is achieved from the same lexical entries.
This paper proposes a method to improve speech recognition performance by extracting various pronunciations of the pseudo-morpheme unit from an eojeol unit corpus and generating a new recognition unit considering pronunciation variations. In the proposed method, we first align the pronunciation of the eojeol units and the pseudo-morpheme units, and then expand the pronunciation dictionary by extracting the new pronunciations of the pseudo-morpheme units at the pronunciation of the eojeol units. Then, we propose a new recognition unit that relies on pronunciation by tagging the obtained phoneme symbols according to the pseudo-morpheme units. The proposed units and their extended pronunciations are incorporated into the lexicon and language model of the speech recognizer. Experiments for performance evaluation are performed using the Korean speech recognizer with a trigram language model obtained by a 100 million pseudo-morpheme corpus and an acoustic model trained by a multi-genre broadcast speech data of 445 hours. The proposed method is shown to reduce the word error rate relatively by 13.8% in the news-genre evaluation data and by 4.5% in the total evaluation data.
As the International Maritime English Organization (IMO) model course for Maritime English has been recently revised and updated, the requirements of current changes to both the 2010 STCW Manila Amendments and English education have been actively reviewed. In order to provide practical guidelines for language teaching, a wide range of new pedagogical approaches and their theoretical backgrounds are also suggested. However, considering the current spread of Business English as a Lingua Franca (BELF) and its critical importance in maritime communication, the pedagogical approaches need to be re-evaluated, specifically in terms of teaching pronunciation in order to emphasize clear and effective communication among international interlocutors. Therefore, the core pedagogical elements of pronunciation should be clearly set and provided with consideration for Lingua Franca Core (LFC), which places importance on mutual intelligibility rather than following the rules of native speakers. In this paper, the current trends of BELF in the maritime industry will thus be introduced. Following this, the importance of LFC in maritime communication will be outlined, and its key features will be discussed in terms of effectiveness and clarity of international maritime communications. Finally, a close comparison between LFC and the pronunciation guidelines suggested by the IMO Maritime English model course 3.17 will be conducted, and pedagogical implications for future teaching pronunciation in cross-cultural global maritime industry will be suggested.
Kim, Key-Seop(2000). English Restructuring and A Use of Music in Teaching English Pronunciation. JSEP 2000 voU This study has two-fold aims: one is to clarify the restructuring of English in utterance, and the other is to relate it to teaching English pronunciation for listening and speaking with a use of music and song by suggesting a model of 10-15 minute pronunciation class syllabus for every period in class. Generally, English utterances are restructured by stress-timed rhythm, irrespective of syntactic boundaries. So the rhythmic units are arranged in isochronous groups, of which the making is to attach clitic(s) to a host or head often leftwards and sometimes rightwards, which results in linking, contraction, reduction, sound change and rhythm adjustment in utterance, just as in music and song. With English restructuring focused on, a model of English pronunciation class syllabus is proposed to be put forward in class for every period of a lesson or unit. It tries to relate the focused factor(s) in pronunciation to the integrated, with teaching techniques and music made use of.
This paper is related to the enhancement of speech recognition rate using enhanced pronunciation dictionary. Modern large vocabulary, continuous speech recognition systems have pronunciation dictionaries. A pronunciation dictionary provides pronunciation information for each word in the vocabulary in phonemic units, which are modeled in detail by the acoustic models. But in most speech recognition system based on Hidden Markov Model, actual pronunciation variations are disregarded. Without the pronunciation variations in the speech recognition system, the phonetic transcriptions in the dictionary do not match the actual occurrences in the database. In this paper, we proposed the unvoiced rule of semivowel in allophone rules to pronunciation dictionary. Experimental results on speech recognition system give higher performance than existing pronunciation dictionaries.
In this paper, we describe a cross-morpheme pronunciation variation model which is especially useful for constructing morpheme-based pronunciation lexicon to improve the performance of a Korean LVCSR. There are a lot of pronunciation variations occurring at morpheme boundaries in continuous speech. Since phonemic context together with morphological category and morpheme boundary information affect Korean pronunciation variations, we have distinguished phonological rules that can be applied to phonemes in within-morpheme and cross-morpheme. The results of 33K-morpheme Korean CSR experiments show that an absolute reduction of 1.45% in WER from the baseline performance of 18.42% WER was achieved by modeling proposed pronunciation variations with a possible multiple context-dependent pronunciation lexicon.
In this paper, we describe a cross-morpheme pronunciation variation model which is especially useful for constructing morpheme-based pronunciation lexicon for Korean LVCSR. There are a lot of pronunciation variations occurring at morpheme boundaries in continuous speech. Since phonemic context together with morphological category and morpheme boundary information affect Korean pronunciation variations, we have distinguished pronunciation variation rules according to the locations such as within a morpheme, across a morpheme boundary in a compound noun, across a morpheme boundary in an eojeol, and across an eojeol boundary. In 33K-morpheme Korean CSR experiment, an absolute improvement of 1.16% in WER from the baseline performance of 23.17% WER is achieved by modeling cross-morpheme pronunciation variations with a context-dependent multiple pronunciation lexicon.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.