• Title/Summary/Keyword: promoter hypermethylation

Search Result 82, Processing Time 0.017 seconds

Association between RASSF1A Methylation and Clinicopathological Factors in Patients with Squamous Cell Carcinoma of Lung (편평상피폐암에서 암억제유전자 RASSF1A의 메틸화와 임상 및 병리소견과의 연관성)

  • Choi, Naeyun;Lee, Hye-Sook;Song, In Seung;Lim, Yu Sung;Son, Dae-Soon;Lim, Dae-Sik;Choi, Yong Soo;Kim, Jhingook;Kim, Hojoong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.3
    • /
    • pp.265-272
    • /
    • 2004
  • Background : RASSF1A, which is one of tumor suppressor genes, is frequently inactivated by hypermethylation of the promoter region in a variety of human cancers, including lung cancer. This study was performed to investigate the association between RASSF1A methylation and the clinicopathological factors in patients with squamous cell carcinoma of the lung. Methods : Eighty-one samples from the patients with squamous cell carcinoma of lung were examined. The promoter methyation of RASSF1A was analyzed by methylation specific PCR and sequencing. Statistical analysis was made to examine the association between RASSF1A methylation and the clinicopathological parameters. Results : RASSF1A methylation was observed in 37.0 % (30 of 81) of the patients with squamous cell carcinoma of the lung. RASSF1A methylation was found to be associated with cellular differentiation(p=0.0097) and the overall survival(p=0.0635). However, there was no association between RASSF1A methylation and the other clinicopathological parameters, such as the pathological TNM stage, the recurrence rate, lymph node invasion and the amount of cigarettes smoked. Conclusion : RASSF1A methylation might be associated with a poor prognosis in patients with squamous carcinoma of the lung. A larger scale study is needed.

($P16^{ink4}$ Methylation in Squamous Cell Carcinoma of the Oral Cavity. (구강 편평세포암종에서 $P16^{ink4}$ 유전자의 Methylation에 대한 연구)

  • Kang, Gin-Won;Kim, Kyung-Wook;Lyu, Jin-Woo;Kim, Chang-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.22 no.2
    • /
    • pp.164-173
    • /
    • 2000
  • The p16 protein is a cyclin dependent kinase inhibitor that inhibits cell cycle progression from $G_1$ phase to S phase in cell cycle. Many p16 gene mutations have been noted in many cancer-cell lines and in some primary cancers, and alterations of p16 gene function by DNA methylation have been noticed in various kinds of cancer tissues and cell-lines. There have been a large body of literature has accumulated indicating that abnormal patterns of DNA methylation (both hypomethylation and hypermethylation) occur in a wide variety of human neoplasma and that these aberrations of DNA methylation may play an important epigenetic role in the development and progression of neoplasia. DNA methylation is a part of the inheritable epigenetic system that influences expression or silencing of genes necessary for normal differentiation and proliferation. Gene activity may be silenced by methylation of up steream regulatory regions. Reactivation is associated with demethylation. Although evidence or a high incidence of p16 alterations in a variety of cell lines and primary tumors has been reported, that has been contested by other investigators. The precise mechanisms by which abnormal methylation might contribute to carcinogenesis are still not fully elucidated, but conceivably could involve the modulation of oncogene and other important regulatory gene expression, in addition to creating areas of genetic instability, thus predisposing to mutational events causing neoplasia. There have been many variable results of studies of head and neck squamous cell carcinoma(HNSCC). This investigation was studied on 13 primary HNSCC for p16 gene status by protein expression in immunohistochemistry, and DNA genetic/epigenetic analyzed to determine the incidence, the mechanisms, and the potential biological significance of its Inactivation. As methylation detection method of p16 gene, the methylation specific PCR(MSP) is sensitive and specific for methylation of any block of CpG sites in a CpG islands using bisulfite-modified DNA. The genomic DNA is modified by treatment with sodium bisulfate, which converts all unmethylated cytosines to uracil(thymidine). The primers designed for MSP were chosen for regions containing frequent cytosines (to distinguish unmodified from modified DNA), and CpG pairs near the 5' end of the primers (to provide maximal discrimination in the PCR between methylated and unmethylated DNA). The two strands of DNA are no longer complementary after bisulfite treatment, primers can be designed for either modified strand. In this study, 13 paraffin embedded block tissues were used, so the fragment of DNA to be amplified was intentionally small, to allow the assessment of methylation pattern in a limited region and to facilitate the application of this technique to samlples. In this 13 primary HNSCC tissues, there was no methylation of p16 promoter gene (detected by MSP and automatic sequencing). The p16 protein-specific immunohistochemical staining was performed on 13 paraffin embedded primary HNSCC tissue samples. Twelve cases among the 13 showed altered expression of p16 proteins (negative expression). In this study, The author suggested that low expression of p16 protein may play an important role in human HNSCC, and this study suggested that many kinds of genetic mechanisms including DNA methylation may play the role in carcinogenesis.

  • PDF