• Title/Summary/Keyword: proline uptake

Search Result 19, Processing Time 0.098 seconds

Effect of KCl and NaCl on Uptake of Proline in Staphylococcus aureus

  • 배진현
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.5 no.1
    • /
    • pp.101-107
    • /
    • 1995
  • Staphylococcus aureus, the most salt-tolerant food-borne pathogen, produces enterotoxins which may cause symptoms such as vomiting, diarrhea, nausea, and cramps. Since this bacterium has been able to grow at extremely high osmolarity its identity in foods with low water activity values such as salted or dried foods is of great concern. In this study, the growth of S. aureus at high osmolarity has been studied and the doubling time of S. aureus grown at TSB medium containing 15% NaCl has been found to be increased to 4∼5 hours. The stimulation of proline uptake after exposure of cells to high concentration of both extracellular KCl and sucrose was not increased. Stimulation of proline uptake at these environment only occured when 25mM NaCl was present I transport buffer. In additional experiments, the time required to reach mid-logarithmic phase in defined medium of high osmolarity found to be reduce by the presence of glycine betaine, proline, and choline.

  • PDF

Role of Proline Accumulation in Response to Toxic Copper in Microcystis aeruginosa

  • Park, So-Hyun;Hong, Jung-Hee
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_4
    • /
    • pp.189-196
    • /
    • 2001
  • The blue green alga, Microcystis aeruginosa, was found to accumulate proline under the stressful concentration of cupric ions. The changes of proline level in Microcystis aeruginosa in response to copper(Cu) have been monitored and the function of the accumulated proline was studied with respect to its effect on Cu uptake. Exposure of Microcystis aeruginosa elevated concentrations of Cu led to accumulation of fee proline depending on the concentrations of the metal in the external medium. The greater the toxicity or accumulation of the metal, the higher the amount of proline in algal cells were found. When proline was exogenously supplied prior to Cu treatment, the absorption of Cu was markedly reduced. When exogenous proline was supplied after Cu treatment, it resulted in a remarkable desorption of the adsorbed Cu immediately after the addition of proline. Pretreatment of Microcystis aeruginosa with proline counteracted with metal-induced lipid peroxidation. The results of the present study showed a protective elect of proline on metal toxicity through inhibition of lipid peroxidation and suggested that the accumulation of proline may be related to the tolerance mechanism for dealing with Cu stress.

  • PDF

AUTORADIOGRAPHIC STUDY OF THE COLLAGENASE - INFLUENCE ON THE RAT PERIODONTIUM AFTER EXPERIMENTAL TOOTH MOVEMENT (실험적(實驗的) 치아이동후(齒牙移動後) 교원효소(膠原酵素) 투여(投與)가 치근막(齒根膜) 섬유(纖維)의 변화(變化)에 미치는 영향(影響)에 관(關)한 자기방사법적(自己放射法的) 연구(硏究))

  • Hong, Sung Joon;Suhr, Cheong Hoon
    • The korean journal of orthodontics
    • /
    • v.20 no.2
    • /
    • pp.227-245
    • /
    • 1990
  • The purpose of this study was to analyze the reorganization of periodontal ligament after collagenase treatment with autoradiography. The author compared the collagenase-treated experimental group and no-treated experimental group with control group. Fourty eight Sprague-Dawley rats were divided into nine groups, including normal control and immediate group. Closed coil springs were used between the upper incisors and the first molars with 100 grams. Collagenase and $^3H-proline$ were adminstered and the samples were sacrificed and sectioned. After being dipped into the NTB-3 emulsion the samples were analyzed with light microscope under H/E stain. Data were analyzed by t-test and ANOVA. The results were as follows: 1) Generally collagenase-treated groups got more $^3H-proline$ uptake than no-treated groups. 2) Compared with normal control group, collagenase-treated group had the same $^3H-proline$ uptake in amount at 21th day. 3) Among cemento-enamel junction, middle, apex areas, cementa-enamel junction area of collagenase-treated group arrived at normal control level earlier than no-treated group. 4) Cemento-enamel junction area had the most $^3H-proline$ incorporation amount in no-treated group, but apex area had the most in collagenase group.

  • PDF

Extensive Hepatic Uptake of Pz-peptide, a Hydrophilic Proline-Containing Pentapeptide, into Isolated Hepatocytes Compared with Colonocytes and Caco-2 Cells

  • Shin, Tae-Ha;Lee, Pung-Sok;Kwon, Oh-Seung;Chung, Youn-Bok
    • Archives of Pharmacal Research
    • /
    • v.26 no.1
    • /
    • pp.70-75
    • /
    • 2003
  • The objective of the present study was to investigate the uptake process of 4-Phenylazobenzoxycarbonyl-Pro-Leu-Gly-Pro-D-Arg (Pz-peptide), a hydrophilic and collagenase-labile pentapeptide, by isolated hepatocytes. For comparison, the uptake of Pz-peptide by Caco-2 cells and colonic cells, two known paracellular routes of Pz-peptide, was also evaluated. A simple and sensitive reversed-phase HPLC assay method using UV detection has been developed. The coefficient of variation for all the criteria of validation were less than 15%. The method was, therefore, considered to be sutable for measuring the concentration of Pz-peptide in the biological cells. Pz-peptide was extensively uptaked into hepatocytes. The initial velocity of Pz-peptide uptake assessed from the initial slope of the curve was plotted as Eadie-Hofstee plots. The maximum velocity ($V_{max}$) and the Michaelis constant ($K_m$) were 0.190$\pm$0.020 $nmol/min/10^6$ cells and 12.1$\pm$3.23 $\mu$M, respectively. The permeability-surface area product ($PS{influx}$) was calculated to be 0.0157 ml/min/10^6$ cells. $V_{max}$ and $K_m$ values for Caco-2 cells were calculated to be 6.22$\pm$0.930 pmol/min/10^6$ cells and 82.8$\pm$8.37 $\mu$M, respectively, being comparable with those of colonocytes (6.04$\pm$1.03 pmol/min/10^6$ cells and 87.8$\pm$13.2 $\mu$M, respectively). $PS_{influx}$ values for Caco-2 cells and colonocytes were calculated to be 0.0751 $\mu$l/min/10^6$ cells and 0.0688 $\mu$l/min/10^6$ cells, respectively. The more pronounced uptake of Pz-peptide by hepatocytes, when compared with Caco-2 cells and colonocytes, is probably due to its specific transporter. In conclusion, Pz-peptide, a paracellularly transported pentapeptide in the intestine and ocular epithelia, was uptaked into hepatocytes extensively. Although Pz-peptide is able to be uptaked into the Caco-2 cells and colonocytes, it is less pronounced when compared with hepatocytes. $PS_{influx}$ values of Caco-2 cells and colonocytes for unbound Pz-peptide under linear conditions were less than 0.4% when compared with that of hepatocytes.

Adaptations and Physiological Characteristics of Three Chenopodiaceae Species under Saline Environments (명아주과 3종 식물의 염 환경에 대한 적응특성의 비교)

  • 송승달;김진아;추연식;배정진;김인숙;추보혜;이인중
    • The Korean Journal of Ecology
    • /
    • v.25 no.2
    • /
    • pp.101-107
    • /
    • 2002
  • Three species of Chenopodiaceae, i.e. Suaeda japonica, Salicomia herbacea, Beta vulgaris var. cicla, were investigated to compare the physiological characteristics through inoic balances and osmoregulations under different environmental salt gradients. Plats were harvested in two weeks from treatments with salt gradients (0, 50, 100, 200 and 400 mM NaCl) and mineral nutrition gradients(1/1, 1/5, 1/10 dilutions of Hoagland solution). Plants were analyzed for growth responses, ionic balances, osmolalities, conductivities, glycinebetaine and proline contents quantitatively. Three plants of Chenopodiaceae accumulated slats into tissues unlike some salt sensitive species, and showed unique adaptation patterns to overcome saline environments, i.e. strong growth stimulation for Salicomia herbacea, growth negative tolerance for Suaeda japonica, and growth positive tolerance for Beta vulgaris var. cicla. The absorption of inorganic Ca/sup 2+/ ions was inhibited remarkably due to the excess uptake of Na+ with increasing salinity. The K+ content in plants was significantly reduced with increasing salinity. Total nitrogen content was reduced as mineral nutritions and salinity increased. Conductivity and osmolality increased with increasing salinity regardless of mineral nutritions. The ranges of glycinebetaine and proline contents were 0.2∼2.5 μM/g plant water and 0.1∼0.6μM/g plant water, respectively.

Effect of Jasmonic Acid and NaCl on the Growth of Spearmint(Mentha spicata L.) (Jasmonic Acid 및 NaCl 처리가 스피아민트의 생육에 미치는 영향)

  • Choi, Young;Chiang, Maehee
    • Journal of Bio-Environment Control
    • /
    • v.26 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • This study investigated the effects of NaCl and jasmonic acid (JA) on the growth and physiological responses of spearmint (Mentha spicata L.). Spearmint was hydroponically grown for 3 weeks in modified Hoagland solution containing 0 (untreated control), JA ($20{\mu}M$ JA pretreatment), NaCl (50 mM NaCl treatment) and JA + NaCl ($20{\mu}M$ JA pretreatment + 50 mM NaCl treatment). Growth characteristics, chlorophyll, vitamin C, proline contents, DPPH scavenging activity and inorganic ion contents were evaluated. As a results, there were significant decreases in the plant height, leaf length, leaf width, and fresh weight of plants, treated with NaCl compared with control. On the other hand, the dry matters of shoot and root treated with JA + NaCl combination were better than control or NaCl treatment. Chlorophyll a and b contents in JA treatment was the highest. Vitamin C, antioxidant activity, and proline content in shoot were increased in NaCl treatment which showed low level of growth rate. The K/Na ratio, which is known to indirectly reflect the balance of ion uptake, was higher in a single treatment of JA than the control group, while lower in salt treatment (NaCl and JA + NaCl) because of high $Na^+$ absorption. In conclusion, these results showed that moderate stress treatment such as low level salt treatment and plant growth regulator jasmonic acid (JA) application would be potential strategies to improve the quality of spearmint by inducing the accumulation of secondary metabolites containing high antioxidant activity and essential oil.

Improvement of K+ and Na+ Ion homeostasis and salt tolerance by Co-inoculation of arbuscular mycorrhizal fungi (AMF) and spore associated bacteria (SAB)

  • Selvakumar, Gopal;Kim, Kiyoon;Roy, C. Aritra;Jeon, Sunyong;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.246-246
    • /
    • 2017
  • Salinity inhibits plant growth and restricts the efficiency of arbuscular mycorrhizal fungi. The selective uptake of nutrients from the soil and their effective transport to host roots make it essential for plant growth and development under salt stress. AMF spore associated bacteria shown to improve mycorrhizal efficiency under stress. Thus, this study aimed to understand the co-inoculation efficiency of AMF and SAB on maize growth and ion homeostasis under salt stress. Two AMF strains and one SAB were inoculated with maize either alone or in combination with one another. The results of our study showed that AMF and SAB co-inoculation significantly improved dry weight and nutrient uptake of maize under salt stress. Co-inoculation significantly reduced proline accumulation in shoots and Na+ accumulation in roots. Co-inoculation treatment also exhibited the high K+/Na+ ratios in roots at 25 mM NaCl. Mycorrhizal colonization showed positive influence for regulation of ZmAKT2, ZmSOS1 and ZmSKOR gene expressions, contributing to K+ and Na+ ion homeostasis. CLSM view showed that SAB were able move and localize into inter and intra cellular spaces of maize roots. In addition, CLSM view of AMF spores showed that gfp-tagged SAB also associated on the spore outer hyaline layer.

  • PDF

Adaptations and Physiological Characteristics of Three Chenopodiaceae Species under Saline Environments (명아주과 3종 식물의 염 환경에 대한 적응특성의 비교)

  • Kim, Jin-A;Choo, Yeon-Sik;Lee, In-Jung;Bae, Jeong-Jin;Kim, In-Sook;Choo, Bo-Hye;Song, Seung-Dal
    • The Korean Journal of Ecology
    • /
    • v.25 no.3 s.107
    • /
    • pp.171-177
    • /
    • 2002
  • Three species of Chenopodiaceae, i.e. Suaeda japonica, Salicomia herbacea, Beta vulgaris var. cicla, were investigated to compare the physiological characteristics through ionic balances and osmoregulations under different environmental salt gradients. Plants were harvested in two weeks from treatments with salt gradients(0, 50, 100, 200 and 400 mM NaCl) and mineral nutrition gradients(1/1, l/5, 1/10 dilutions of Hoagland solution). Plants were analyzed for growth responses, ionic balances, osmolalities, conductivities, glycinebetaine and proline contents quantitatively. Three plants of Chenopodiaceae accumulated salts into tissues unlike some salt sensitive species, and showed unique adaptation patterns to overcome saline environments, i.e. strong growth stimulation for Salicomia herbacea, growth negative tolerance for Suaeda japonica, and growth positive tolerance for Beta vulgaris var cicla. The absorption of inorganic $Ca^{2+}$ ions was inhibited remarkably due to the excess uptake of $Na^+$ with increasing salinity. The $K^+$ content in plants was significantly reduced with increasing salinity. Total nitrogen content was reduced as mineral nutritions and salinity increases. Conductivity and osmolality increased with increasing salinity regardless of mineral nutritions. The ranges of glycinebetaine and proline contents were $0.2{\sim}2.5{\mu}M/g$ plant water and $0.1{\sim}0.6{\mu}M/g$ plant water, respectively.

Transformation of Rice Embryogenic Cells by Electroporation Mediated Plasmid Uptake into Protoplasts 1. Plant Regeneration from Electroporated Protoplasts of Rice (원형질체 내 Plasmid Electroporation에 의한 벼 배발생세포의 형질전환 1. 벼의 Electroporation 원형질체로부터 식물체 재분화)

  • 김명덕;최성진김준철
    • KSBB Journal
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 1995
  • Calli were induced from leaf base region of germinated rice(Oryza sativa L. cv. Nakdong) with high frequency of up to 65% on LS medium supplemented with $2.5mg/{\ell}2$, 4-D in the dark at $27^{\circ}C$. Embryogenic calli of pale yellow, globular type were selected and used for the initiation of cell suspension cultures in AA2 liquid medium with $2mg/\ell$ 2,4-D, 0.2mg/$\ell$ kinetin arid $0.1mg/\ell$ GA3. Protoplasts were isolated from the embryogenic cell suspensions after 4 months of culture and then were electroporated with 400V/cm for 1 msec. Electroporated protoplasts divided with plating efficiency of 1.1% on PCM liquid medium supplemented with $2.5mg/\ell$ 2, 4-D, $0.1mg/\ell$ kinetin and 10mM proline. The protoplasts-derived microcalli were cultured on $0.2{\mu}m$ membrane fitter placed onto LS2.5 solid medium containing fine suspension cells as a feeder cells, for 2 weeks in the dark at $27^{\circ}C$. After an additional 2 weeks of culture under fluorescent light of $30{\pm}/3{\mu}E$.m^{-2}S^{-1}, yellow calli of 2mm diameter were transferred to regeneration medium. Shoots were produced from the green spot of protoplasts-derived calli and plants were regenerated form protoplast-derived green calli with frequencies of 11∼33%.

  • PDF

Effects of Pig Manure Application on Nitrogen Uptake, Yield and Active Components of Chrysanthemum boreale M. (돈분퇴비 시용이 산국의 질소흡수 및 수량과 유호성분에 미치는 영향)

  • Lee, Kyung-Dong;Yang, Min-Suk
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.5
    • /
    • pp.371-376
    • /
    • 2003
  • To develop an efficient cultivation system to increase the productivity and the high quality of Chrysanthemum boreale M., the effects of pig manure (PM) application on the yield and the effective component were investigated in the pot scale (1/2000a scale). PM applied at the equivalent of six rates (with rate of 0, 2000, 4000, 6000, 8000, and 12000 kg $10a^{-1}$). Maximum plant biomass yield was achieved at 9510 kg $10a^{-1}$ and at 9940 kg $10a^{-1}$ for flower biomass. Nitrogen recovery efficiency was more than 42% for all nitrogen treatments and reached 66.6% at 4000 kg $10a^{-1}$. Proline $(7.4{\sim}9.2\;g\;kg^{-1})$ was the most abundant amino acid in the flower of C. boreale M. and the contents of amino acids increased with increasing PM application rate. Contents of cumambrin A. a sesquiterpene compound known to reduce blood-pressure, decreased with increasing PM application. The highly negative correlation was found ($R^2$ = -0.723, P<0.01) between content of cumambrin A and PM application. However, the amount of cumambrin A in flowers increased as PM rate increased, because of increasing flower yield. In conclusion, PM fertilization increases yields and enhances overall quality.