• Title/Summary/Keyword: projectile

Search Result 399, Processing Time 0.027 seconds

Synthesis of Alumina-Silica ceramic material(II) (알루미나-실리카계 세라믹복합체 제조 연구(II))

  • Kim Cheol-soo;Lee Hyung-Bock
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.48-53
    • /
    • 2005
  • In this study, to improve the ballistic efficiency of very brilliant alumina-silica armor material, forming press and sintering temperature were changed. After physical/mechanical measurement, we measured ballistic properties about KE(Kinetic Energy, L/D=10.7, tungsten heavy alloy) and HEAT(High Explosive Anti-Tank, K215) projectiles and analyzed them. As a result, in $1235^{\circ}C$, it appeared the highest ballistic efficiency about HEAT and it improved $22\%$ ballistic efficiency, better than invented alumina-silica armor material before.

A Study on Capacitor-Driven Induction Coil Guns (커패시터로 구동되는 유도형 전자(電磁) 가속장치의 연구)

  • Jang, S.M.;Kim, S.W.;Jung, H.K.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.143-146
    • /
    • 1991
  • This paper describes the analysis of a capacitor-driven induction coil-gun employing an equivalent circuit. The system differerntial equations are solved by using Runge-Kutta method. The velocity characteristics of projectile and current building in barrel ciols are studied. From the results, it is shown the optimal capacitance of capacitors, charging voltage and initial position of the projectile can be determined. These results will be used as the basis data for the design of capacitor driven coil-guns.

  • PDF

Analysis of Composite Sabot Structure using Equivalent Properties (등가물성을 이용한 복합재 이탈피의 구조해석)

  • 이성호;이강우;우경식;박관진
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.63-72
    • /
    • 2003
  • This paper deals with the analysis of composite sabot of APFSDS projectile. Unlike conventional composite parts, the sabot is composed of thick-sectioned lamination, and thus requires 3-dimensional properties in the analysis. In this study, a model was formulated to calculate the equivalent composites properties. The equivalent properties were then used in the finite element analysis and the results were compared with those by the full 3-dimensional analysis with ply-by-ply modeling. The results generally agreed with each other in the bound of 20% error, indicating that the formulated model produced the equivalent properties with reasonable accuracy. It was thought to be an efficient approach to use the model in global analysis and then perform the full 3-dimensional analysis in regions of interest for detailed evaluation in designing the composite sabot structure.

A Study on the Stiffened Rectangular Plate under High Velocity Impact (고속발사 충격을 받는 보강사각판의 연구)

  • Woo, Dae-Hyun;Lee, Young-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.350-357
    • /
    • 2012
  • The velocity response of stiffened rectangular plate under high velocity impact was studied. Numerical simulation was conducted on the stiffened plate with four stiffeners under various impact positions. Considered stiffener types were rib, I, hat and T stiffener. For the center impact position of I stiffened plate, the simulated residual velocity was 365.6 m/s with the initial projectile velocity 500 m/s. The reinforcing characteristic of I stiffened plate was excellent among four stiffeners.

Base Flow with External Combustion (외부연소를 고려한 기저유동)

  • Shin, Jae-Ryul;Choi, Jeoung-Yeoul
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.92-97
    • /
    • 2007
  • Numerical simulations were carried out to investigate the base drag characteristics of a base bleed projectile with a central propulsive jet by considering the base burning process. Overall fluid dynamic process is modeled by Navier-Stokes equations for reacting flows with two-equation $k-{\omega}$ SST turbulence closure. The combustion process is modeled by finite-rate chemistry with a given partially burned exit condition of the BBU (base-bleed unit). Besides the demonstrating the capability of the present CFD solver for the base drag and the interaction of the base flow with a rocket plume, present study gives an insight into the fluid dynamics and the combustion process of the hybrid-propulsion projectile.

  • PDF

Evaluation on the Impact Resistance Performance of Fiber Reinforced Concrete by High Velocity Steel Projectile Test (고속 비상체의 충격시험에 의한 섬유보강콘크리트의 내충격 성능평가)

  • Nam, Jeong-Soo;Choi, Hyeong-Gil;Kim, Young-Sun;Park, Jong-Ho;Jeong, Yong;Kim, Gyu-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.389-390
    • /
    • 2009
  • Recently, building structure damage and number of lives lost by bomb terror is increasing. Therefore, in this study, present basic data for development of impact resistance performance by evaluation on the impact resistance performance of fiber reinforced concrete by high velocity steel projectile test.

  • PDF

A study on the fracture behavior of Ti/Al laminates under high velocity impact (고속충격을 받는 Ti/Al 적층재의 파괴거동에 관한 연구)

  • Sohn, Se-Won;Lee, Doo-Sung;Hong, Sung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.267-272
    • /
    • 2003
  • In order to investigate the effect of face material on Ti/Al alloy laminates under high velocity impact, a ballistic testing was conducted. Ballistic resistance of these materials was measured by protection ballistic limit($V_{50}$), a statistical velocity with 50% probability penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, were respectfully observed, by $V_{50}$ test and Projectile Through Plates (PTP) test at velocities greater than $V_{50}$. PTP tests were conducted with $0^{\circ}$obliquity at room temperature using 5.56mm ball projectile. $V_{50}$ tests with $0^{\circ}$obliquity were also done with projectiles that were able to achieve near or complete penetration during PTP tests. Resistance to penetration, and penetration modes which face material was Titanium alloy, were compared to those which face material was anodized Al alloy after cold-rolling.

  • PDF

3D Etching Profile used Inductive Coupled Plasma (ICP) Source with Ambipolar Drift and Binary-Collision Effect. (쌍극성표동 효과와 이체충돌효과를 고려한 ICP(Inductive Coupled Plasma) 3차원 식각)

  • 이영직;이강환;이주율;강정원;문원하;손명식;황호정
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.891-894
    • /
    • 1999
  • ICP reactor produces high-density and high-uniformity plasma in large area, are has excellent characteristic of direction in the case of etching. Until now, many algorithms used one mesh method. These algorithms are not appropriate for sub 0.1 ${\mu}{\textrm}{m}$ device technologies which should deal with each ion. These algorithms could not present exactly straggle and interaction between projectile ions and could not consider reflection effects due to interactions among next projectile ions, reflected ions and sputtering ions, simultaneously. And difficult consider am-bipolar drift effect.

  • PDF

A Study of Storage Life Estimation for Delay System in the Fuse of 81mm Illuminating Projectile (81미리 조명탄용 신관 KM84A1E1 지연제의 저장수명 예측 연구)

  • Chang, Il-Ho;Kim, Ji-Hoon;Lee, Woo-Chul;Back, Seung-Jun;Son, Young-Kap
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.3
    • /
    • pp.270-277
    • /
    • 2012
  • Purpose: In this paper, storage lifetime of delay system in the fuse of 81MM illuminating projectile is estimated. Methods: Accelerated degradation testings of tungsten delay system using both temperature and humidity stresses were performed, and then delay time increase of the systems were analyzed as degradation data based on distribution-based degradation processes. Results: The estimated storage lifetime of detonator is between 11.8 years and 17.6 years with each stress-life relationship. Conclusion: Comparing with field data, storage lifetime of 90% reliability is about 12 years.

Spray Angle and Break-up Characteristics of Supersonic Liquid Jets by an Impinging Methods with High Speed Projectile (초고속 발사체의 액체 저장부 충돌에 의한 초음속 액체 제트의 분무 속도 및 분열 특성)

  • Lee, In-Chul;Shin, Jeung-Hwan;Kim, Heuy-Dong;Koo, Ja-Ye
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • Pulsed supersonic liquid jets injected into an ambient air are empirically studied by using a high pressure ballistic range system. Ballistic range systems which are configured with high-pressure tube, pump tube, launch tube and liquid storage nozzle. Experimental studies are conducted to use with various impact nozzle geometry. Supersonic liquid jets are generated by an impact of high speed of the projectile. High speed liquid jets are injected with M = 3.2 which pressure is 1.19 GPa. Multiple jets which accompany with shock wave and pressure wave in front of the jet were observed. The shock-wave affects significantly atomization process for each spray droplets. As decreasing orifice diameter, the averaged SMD of spray jets had the decreasing tendency.