• Title/Summary/Keyword: prognostics and health management(PHM)

검색결과 35건 처리시간 0.025초

베어링 잔존 수명 예측을 위한 주파수 에너지 기반 특징신호 추출 (Feature Extraction for Bearing Prognostics based on Frequency Energy)

  • 김석구;최주호;안다운
    • 한국ITS학회 논문지
    • /
    • 제16권2호
    • /
    • pp.128-139
    • /
    • 2017
  • 철도는 항공기, 선박 등과 더불어 대표적 대중교통 수단으로서 최근 고속 철도의 등장으로 인해 그 비중이 점점 더 높아지고 있으며, 아울러 대형사고의 위험 또한 증가하고 있다. 이중에서 철도 차량의 차축 베어링은 높은 안전성이 요구되는 부품으로서 최근 이의 고장예측을 위한 건전성 관리기술(Prognostics and Health Management, PHM)에 많은 연구가 집중되고 있다. PHM은 센서를 통해 얻은 데이터로부터 결함관련 특징신호를 추출하고 현재의 고장수준 진단과 미래의 고장싯점을 예측하는 기술로서, 이중에서 가장 중요한 부분은 올바른 특징신호를 추출하는 것이다. 그러나 지금까지의 특징신호들은 잡음으로 인한 심한 변동이나 비단조 경향으로 인해 고장예측에 이용하기에 부족한 점이 있었다. 본 연구에서는 이를 극복하기 위해 주파수 에너지 이동현상을 기반으로 정보 엔트로피를 특징신호로 사용하는 새로운 특징신호 추출법을 개발하고 IEEE 2012 PHM 경진대회에서 공개된 FEMTO 베어링 수명시험 데이터를 대상으로 기존의 특징신호들과 고장예측 성능비교를 함으로써 그 우수성을 검증하였다.

상관계수 가중치를 이용한 베어링 수명예측 특징신호 추출 (Feature Extraction for Bearing Prognostics using Weighted Correlation Coefficient)

  • 김석구;임채영;최주호
    • 한국전산구조공학회논문집
    • /
    • 제31권1호
    • /
    • pp.63-69
    • /
    • 2018
  • 베어링은 많은 회전체에서 사용되는 핵심부품으로, 예기치 않은 고장을 방지하기 위해 많은 연구가 집중되고 있다. 이때 중요한 것은 되도록 초기에 건전성 상태를 잘 나타내는 적절한 특징신호를 추출하는 것이다. 그러나 기존의 연구들은 주로 진단관점에서 특징신호를 추출하여 고장예지에는 적합하지 않은 측면이 있었다. 본 논문에서는 이러한 문제를 극복하기 위해 베어링 고장 주파수의 에너지와 시간 사이의 상관계수 가중 합을 이용하여 베어링 수명 예측에 용이한 특징신호를 추출하는 방법을 개발하였다. 그 결과 일반적으로 고장진단에서 많이 사용되고 있는 특징신호인 RMS에 비해서 결함 초기부터 단조로운 증가 경향의 특징신호를 추출함을 알 수 있었다. 이를 입증하기 위해서 NASA Ames에서 제공한 IMS bearing 진동 데이터를 이용하였고 제시한 특징신호와 일반적인 RMS와 의 거동을 비교하여 유효성을 검증하였다.

The application of machine learning for the prognostics and health management of control element drive system

  • Oluwasegun, Adebena;Jung, Jae-Cheon
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2262-2273
    • /
    • 2020
  • Digital twin technology can provide significant value for the prognostics and health management (PHM) of critical plant components by improving insight into system design and operating conditions. Digital twinning of systems can be utilized for anomaly detection, diagnosis and the estimation of the system's remaining useful life in order to optimize operations and maintenance processes in a nuclear plant. In this regard, a conceptual framework for the application of digital twin technology for the prognosis of Control Element Drive Mechanism (CEDM), and a data-driven approach to anomaly detection using coil current profile are presented in this study. Health management of plant components can capitalize on the data and signals that are already recorded as part of the monitored parameters of the plant's instrumentation and control systems. This work is focused on the development of machine learning algorithm and workflow for the analysis of the CEDM using the recorded coil current data. The workflow involves features extraction from the coil-current profile and consequently performing both clustering and classification algorithms. This approach provides an opportunity for health monitoring in support of condition-based predictive maintenance optimization and in the development of the CEDM digital twin model for improved plant safety and availability.

인공지능을 이용한 공학시스템 상태진단 및 예지

  • 윤병동;황태완;조수호;이동기;나규민
    • 기계저널
    • /
    • 제57권3호
    • /
    • pp.38-41
    • /
    • 2017
  • 이 글에서는 인공지능을 이용한 공학시스템 고장진단 및 예지기술(PHM: Prognostics and Health Management)의 개념을 소개하고, 실제 적용 사례를 제시한다.

  • PDF

클라우드 컴퓨팅 기반의 자동차 부하정보 모니터링 시스템 개발 (Development of Load Profile Monitoring System Based on Cloud Computing in Automotive)

  • 조휘;김기태;장윤희;김승환;김준수;박건영;장중순;김종만
    • 품질경영학회지
    • /
    • 제43권4호
    • /
    • pp.573-588
    • /
    • 2015
  • Purpose: For improving result of estimated remaining useful life in Prognostics and Health Management (PHM), a system which is able to consider a lot of environment and load data is required. Method: A load profile monitoring system was presented based on cloud computing for gathering and processing raw data which is included environment and load data. Result: Users can access results of load profile information on the Internet. The developed system provides information which consists of distribution of load data, basic statistics, etc. Conclusion: We developed the load profile monitoring system for considering much environment and load data. This system has advantages such as improving accessibility through smart device, reducing cost, and covering various conditions.

소음·진동을 이용한 딥러닝 기반 기계 고장진단 임베디드 시스템 (Deep-Learning based PHM Embedded System Using Noise·Vibration)

  • 이세훈;신보배;김예지;김지성
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2017년도 제56차 하계학술대회논문집 25권2호
    • /
    • pp.9-10
    • /
    • 2017
  • 본 논문에서 소음, 진동을 이용한 딥러닝 기반 기계 고장진단 임베디드 시스템을 제안하였다. 제안된 시스템은 기계로부터 취득된 소리와 진동을 바탕으로 학습한 DNN모델을 통해 실시간으로 기계 고장을 진단한다. 딥러닝 기술을 사용하여 학습에 따라 적용대상이 변경될 수 있도록 함으로써 특정 기계에 종속적이지 않고 가변적으로 다양한 기계에 대해 고장 예지 및 건전성 관리를 제공하도록 설계하였으며, 이를 증명하기 위해 액추에이터를 환풍기로 설정하여 정상상태와 4가지 비정상상태의 5가지상태를 학습하여 실험한 결과 93%의 정확도를 얻었다.

  • PDF

CNN 기반의 소음을 이용한 원동 구동장치 고장 원인 분류 시스템 (CNN based Actuator Fault Cause Classification System Using Noise)

  • 이세훈;김지성;신보배
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제57차 동계학술대회논문집 26권1호
    • /
    • pp.7-8
    • /
    • 2018
  • 본 논문에서는 CNN 기반의 소음을 이용한 원동 구동장치 진단시스템(PHM)을 제안한다. 이 시스템은 구동장치로부터 발생된 소리로부터 특징데이터를 추출하여 이를 학습한 후 실시간으로 구동장치의 상태를 진단하는 것을 목적으로 하며, 딥러닝 기술을 이용하여 특정 장치에 종속되지 않고 학습할 데이터에 따라 적용 대상이 쉽게 가변 할 수 있도록 설계하였다. 본 논문에서는 실제 적용될 현장에서 발생할 수 있는 예측외의 소음환경에 유연하게 대처하기 위해 딥러닝 모델 중 CNN을 적용한 시스템을 설계하였으며, 제안된 시스템과 이전 연구에서 제안된 DNN 기반의 기계진단시스템을 학습데이터의 환경과 다른 처리배제가 필요한 소음환경에서 비교 실험하여 제안된 시스템이 새로운 환경적응 성능향상에 대하여 우수한 결과를 얻었음을 확인하였다.

  • PDF

C-MAPSS 데이터를 이용한 항공기 엔진의 신경 회로망 기반 건전성관리 (Neural Network based Aircraft Engine Health Management using C-MAPSS Data)

  • 윤유리;김석구;조성희;최주호
    • 항공우주시스템공학회지
    • /
    • 제13권6호
    • /
    • pp.17-25
    • /
    • 2019
  • 항공기 엔진의 고장예지 및 건전성 관리(PHM)는 고장 또는 수명한계 도달 전에 잔존 유효 수명을 예측하는 것이다. PHM 기술 중 예측모델을 확립하는 방법은 물리 기반과 데이터 기반 방법이 있다. 물리기반 방법은 적은 데이터로 정확한 예측이 가능하지만 확립된 손상 물리 모델이 적어서 적용에 한계가 있다. 본 연구는 따라서 데이터 기반 방법을 적용하였으며, 수명 예측을 위해서 신경회로망 알고리즘 중 Multi-layer Perceptron을 이용하였다. 이를 위해 미국 항공우주국(NASA)에서 개발한 C-MAPSS 코드로 생성된 가상 데이터 세트를 이용하여 신경회로망을 학습하였다. 학습된 신경회로망 모델은 테스트 세트에 적용한 후 잔존 유효 수명의 신뢰구간을 예측하고 실제 값을 통해 정확도를 검증하였다. 또한 본 연구에서 제시된 방법을 기존 문헌의 것과도 비교하였고 그 결과 비교적 양호한 정확도를 확인할 수 있었다.

PHM 기술을 이용한 고속 EMU의 고장 예측 방법 연구 및 적용 (Research and Application of Fault Prediction Method for High-speed EMU Based on PHM Technology)

  • 왕해도;민병원
    • 사물인터넷융복합논문지
    • /
    • 제8권6호
    • /
    • pp.55-63
    • /
    • 2022
  • 최근 중국에서 중대형 도시철도의 급속한 발전으로 고속철도의 총 운행거리와 총 EMU(Electric Multiple Units) 수가 증가하고 있다. 고속 EMU의 시스템 복잡성은 지속적으로 증가하고 있으며, 이는 장비의 안전성과 유지보수의 효율성에 대한 더 높은 요구사항을 제시한다. 현재 중국의 고속 EMU의 유지보수 모드는 여전히 계획적인 유지보수 및 고장보수에 기반한 사후 유지보수 방식을 채택하고 있어 유지보수가 미흡하거나 과도하게 이루어지며, 장비 고장 처리의 효율성을 떨어뜨리고 유지보수 비용을 증가시킨다. PHM(진단 및 예측관리)의 지능형 운영 및 유지관리 기술을 기반으로 합니다. 본 논문은 고속 EMU의 서로 다른 시나리오의 다중 소스 이기종 데이터를 통합하여 "차량 시스템-통신 시스템-지상 시스템"의 통합 PHM 플랫폼을 구축하고, 장비 고장 메커니즘을 인공지능 알고리즘과 결합하여 고속 EMU의 트랙션 모터에 대한 고장 예측 모델을 구축한다. 고속 EMU의 안전하고 효율적인 작동을 보장하기 위해 고장 예측 및 정확한 유지보수를 사전에 수행해야 한다.

Improvement of inspection system for common crossings by track side monitoring and prognostics

  • Sysyn, Mykola;Nabochenko, Olga;Kovalchuk, Vitalii;Gruen, Dimitri;Pentsak, Andriy
    • Structural Monitoring and Maintenance
    • /
    • 제6권3호
    • /
    • pp.219-235
    • /
    • 2019
  • Scheduled inspections of common crossings are one of the main cost drivers of railway maintenance. Prognostics and health management (PHM) approach and modern monitoring means offer many possibilities in the optimization of inspections and maintenance. The present paper deals with data driven prognosis of the common crossing remaining useful life (RUL) that is based on an inertial monitoring system. The problem of scheduled inspections system for common crossings is outlined and analysed. The proposed analysis of inertial signals with the maximal overlap discrete wavelet packet transform (MODWPT) and Shannon entropy (SE) estimates enable to extract the spectral features. The relevant features for the acceleration components are selected with application of Lasso (Least absolute shrinkage and selection operator) regularization. The features are fused with time domain information about the longitudinal position of wheels impact and train velocities by multivariate regression. The fused structural health (SH) indicator has a significant correlation to the lifetime of crossing. The RUL prognosis is performed on the linear degradation stochastic model with recursive Bayesian update. Prognosis testing metrics show the promising results for common crossing inspection scheduling improvement.