철도는 항공기, 선박 등과 더불어 대표적 대중교통 수단으로서 최근 고속 철도의 등장으로 인해 그 비중이 점점 더 높아지고 있으며, 아울러 대형사고의 위험 또한 증가하고 있다. 이중에서 철도 차량의 차축 베어링은 높은 안전성이 요구되는 부품으로서 최근 이의 고장예측을 위한 건전성 관리기술(Prognostics and Health Management, PHM)에 많은 연구가 집중되고 있다. PHM은 센서를 통해 얻은 데이터로부터 결함관련 특징신호를 추출하고 현재의 고장수준 진단과 미래의 고장싯점을 예측하는 기술로서, 이중에서 가장 중요한 부분은 올바른 특징신호를 추출하는 것이다. 그러나 지금까지의 특징신호들은 잡음으로 인한 심한 변동이나 비단조 경향으로 인해 고장예측에 이용하기에 부족한 점이 있었다. 본 연구에서는 이를 극복하기 위해 주파수 에너지 이동현상을 기반으로 정보 엔트로피를 특징신호로 사용하는 새로운 특징신호 추출법을 개발하고 IEEE 2012 PHM 경진대회에서 공개된 FEMTO 베어링 수명시험 데이터를 대상으로 기존의 특징신호들과 고장예측 성능비교를 함으로써 그 우수성을 검증하였다.
베어링은 많은 회전체에서 사용되는 핵심부품으로, 예기치 않은 고장을 방지하기 위해 많은 연구가 집중되고 있다. 이때 중요한 것은 되도록 초기에 건전성 상태를 잘 나타내는 적절한 특징신호를 추출하는 것이다. 그러나 기존의 연구들은 주로 진단관점에서 특징신호를 추출하여 고장예지에는 적합하지 않은 측면이 있었다. 본 논문에서는 이러한 문제를 극복하기 위해 베어링 고장 주파수의 에너지와 시간 사이의 상관계수 가중 합을 이용하여 베어링 수명 예측에 용이한 특징신호를 추출하는 방법을 개발하였다. 그 결과 일반적으로 고장진단에서 많이 사용되고 있는 특징신호인 RMS에 비해서 결함 초기부터 단조로운 증가 경향의 특징신호를 추출함을 알 수 있었다. 이를 입증하기 위해서 NASA Ames에서 제공한 IMS bearing 진동 데이터를 이용하였고 제시한 특징신호와 일반적인 RMS와 의 거동을 비교하여 유효성을 검증하였다.
Digital twin technology can provide significant value for the prognostics and health management (PHM) of critical plant components by improving insight into system design and operating conditions. Digital twinning of systems can be utilized for anomaly detection, diagnosis and the estimation of the system's remaining useful life in order to optimize operations and maintenance processes in a nuclear plant. In this regard, a conceptual framework for the application of digital twin technology for the prognosis of Control Element Drive Mechanism (CEDM), and a data-driven approach to anomaly detection using coil current profile are presented in this study. Health management of plant components can capitalize on the data and signals that are already recorded as part of the monitored parameters of the plant's instrumentation and control systems. This work is focused on the development of machine learning algorithm and workflow for the analysis of the CEDM using the recorded coil current data. The workflow involves features extraction from the coil-current profile and consequently performing both clustering and classification algorithms. This approach provides an opportunity for health monitoring in support of condition-based predictive maintenance optimization and in the development of the CEDM digital twin model for improved plant safety and availability.
Purpose: For improving result of estimated remaining useful life in Prognostics and Health Management (PHM), a system which is able to consider a lot of environment and load data is required. Method: A load profile monitoring system was presented based on cloud computing for gathering and processing raw data which is included environment and load data. Result: Users can access results of load profile information on the Internet. The developed system provides information which consists of distribution of load data, basic statistics, etc. Conclusion: We developed the load profile monitoring system for considering much environment and load data. This system has advantages such as improving accessibility through smart device, reducing cost, and covering various conditions.
본 논문에서 소음, 진동을 이용한 딥러닝 기반 기계 고장진단 임베디드 시스템을 제안하였다. 제안된 시스템은 기계로부터 취득된 소리와 진동을 바탕으로 학습한 DNN모델을 통해 실시간으로 기계 고장을 진단한다. 딥러닝 기술을 사용하여 학습에 따라 적용대상이 변경될 수 있도록 함으로써 특정 기계에 종속적이지 않고 가변적으로 다양한 기계에 대해 고장 예지 및 건전성 관리를 제공하도록 설계하였으며, 이를 증명하기 위해 액추에이터를 환풍기로 설정하여 정상상태와 4가지 비정상상태의 5가지상태를 학습하여 실험한 결과 93%의 정확도를 얻었다.
본 논문에서는 CNN 기반의 소음을 이용한 원동 구동장치 진단시스템(PHM)을 제안한다. 이 시스템은 구동장치로부터 발생된 소리로부터 특징데이터를 추출하여 이를 학습한 후 실시간으로 구동장치의 상태를 진단하는 것을 목적으로 하며, 딥러닝 기술을 이용하여 특정 장치에 종속되지 않고 학습할 데이터에 따라 적용 대상이 쉽게 가변 할 수 있도록 설계하였다. 본 논문에서는 실제 적용될 현장에서 발생할 수 있는 예측외의 소음환경에 유연하게 대처하기 위해 딥러닝 모델 중 CNN을 적용한 시스템을 설계하였으며, 제안된 시스템과 이전 연구에서 제안된 DNN 기반의 기계진단시스템을 학습데이터의 환경과 다른 처리배제가 필요한 소음환경에서 비교 실험하여 제안된 시스템이 새로운 환경적응 성능향상에 대하여 우수한 결과를 얻었음을 확인하였다.
항공기 엔진의 고장예지 및 건전성 관리(PHM)는 고장 또는 수명한계 도달 전에 잔존 유효 수명을 예측하는 것이다. PHM 기술 중 예측모델을 확립하는 방법은 물리 기반과 데이터 기반 방법이 있다. 물리기반 방법은 적은 데이터로 정확한 예측이 가능하지만 확립된 손상 물리 모델이 적어서 적용에 한계가 있다. 본 연구는 따라서 데이터 기반 방법을 적용하였으며, 수명 예측을 위해서 신경회로망 알고리즘 중 Multi-layer Perceptron을 이용하였다. 이를 위해 미국 항공우주국(NASA)에서 개발한 C-MAPSS 코드로 생성된 가상 데이터 세트를 이용하여 신경회로망을 학습하였다. 학습된 신경회로망 모델은 테스트 세트에 적용한 후 잔존 유효 수명의 신뢰구간을 예측하고 실제 값을 통해 정확도를 검증하였다. 또한 본 연구에서 제시된 방법을 기존 문헌의 것과도 비교하였고 그 결과 비교적 양호한 정확도를 확인할 수 있었다.
최근 중국에서 중대형 도시철도의 급속한 발전으로 고속철도의 총 운행거리와 총 EMU(Electric Multiple Units) 수가 증가하고 있다. 고속 EMU의 시스템 복잡성은 지속적으로 증가하고 있으며, 이는 장비의 안전성과 유지보수의 효율성에 대한 더 높은 요구사항을 제시한다. 현재 중국의 고속 EMU의 유지보수 모드는 여전히 계획적인 유지보수 및 고장보수에 기반한 사후 유지보수 방식을 채택하고 있어 유지보수가 미흡하거나 과도하게 이루어지며, 장비 고장 처리의 효율성을 떨어뜨리고 유지보수 비용을 증가시킨다. PHM(진단 및 예측관리)의 지능형 운영 및 유지관리 기술을 기반으로 합니다. 본 논문은 고속 EMU의 서로 다른 시나리오의 다중 소스 이기종 데이터를 통합하여 "차량 시스템-통신 시스템-지상 시스템"의 통합 PHM 플랫폼을 구축하고, 장비 고장 메커니즘을 인공지능 알고리즘과 결합하여 고속 EMU의 트랙션 모터에 대한 고장 예측 모델을 구축한다. 고속 EMU의 안전하고 효율적인 작동을 보장하기 위해 고장 예측 및 정확한 유지보수를 사전에 수행해야 한다.
Scheduled inspections of common crossings are one of the main cost drivers of railway maintenance. Prognostics and health management (PHM) approach and modern monitoring means offer many possibilities in the optimization of inspections and maintenance. The present paper deals with data driven prognosis of the common crossing remaining useful life (RUL) that is based on an inertial monitoring system. The problem of scheduled inspections system for common crossings is outlined and analysed. The proposed analysis of inertial signals with the maximal overlap discrete wavelet packet transform (MODWPT) and Shannon entropy (SE) estimates enable to extract the spectral features. The relevant features for the acceleration components are selected with application of Lasso (Least absolute shrinkage and selection operator) regularization. The features are fused with time domain information about the longitudinal position of wheels impact and train velocities by multivariate regression. The fused structural health (SH) indicator has a significant correlation to the lifetime of crossing. The RUL prognosis is performed on the linear degradation stochastic model with recursive Bayesian update. Prognosis testing metrics show the promising results for common crossing inspection scheduling improvement.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.