• Title/Summary/Keyword: production water

Search Result 6,070, Processing Time 0.039 seconds

An Experimental Study on the Condensation Characteristics of Sea Water in the Tilted Box with Solar Radiation (태양열을 받는 경사진 육면체 내 해수의 응축특성에 관한 실험적 연구)

  • Kim, Beom-Han;Kim, Byung-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.27-33
    • /
    • 2011
  • To find effective way of the production of distilled water for drought and flood with solar radiation, three boxes were made same base each 1000mm ${\times} $1000mm and tops are 45 degree. Individual boxes contained the sea water, rain water and surface water were placed at the same location and same time. Condensation of each box has been compared. On clear day production of distilled water in the box with sea water was 36% and 32% less than boxes with rain water and surface water. The maximum condensation reached when the temperature of the top and bottom parts are equal. As concentration of sea water increased production of distilled water was decreased. In the box with sea water, the surface temperature was lower than 3cm below the surface. Optimum collector area for producing distilled water 2000ml of these three boxes were $3.75m^2$

The Immunomodulating Effects of Aster Scaber $T_{HUNB}$ Extracts in Mice

  • Kim, Jin;Kim, Hyun-Sook
    • Nutritional Sciences
    • /
    • v.5 no.4
    • /
    • pp.203-210
    • /
    • 2002
  • Aster scaber $T_{HUNB}$ (AST ; Charm-chui), a potent herbal medicinal plant, has a long tradition of use, being harvested as a wild plant, is said to stimulate appetite, and may act as a diuretic, antifebrile agent and painkiller. This study was conducted to investigate the immunomodulative effects of AST In mice, using in vitro and in vivo experiments. The immunomodulative effects were studied in vitro by measuring the proliferation of mice splenocytes and the production of three kinds of cytokines (IL-$\beta$, IL-6, and TNF-$\alpha$) by mice peritoneal macrophages which were cultured with sequential fractions of AST methanol extract (methanol, hexane, chlo-roform, ethylacetate, butanol and water). In an in vivo experiment using mice, different concentrations of AST water extract were orally administrated every other day for two weeks. The production of cytokines (IL-1$\beta$, IL-6, and TNF-$\alpha$) secreted by activated macrophages, and the proliferation of mice splenocytes, were used as indices for immunocompetence. In vitro supplementation using six fractions of AST in the range of 1 to 100$\mu$ g/ml enhanced splenocyte proliferation by 10.5% to 53% compared to the control. IL-1$\beta$production was significantly increased with the supplementation of butanol and water extracts of AST. Higher levels of IL-6 and TNF-$\alpha$production were detected with supplementation of methanol, ethylacetate, butanol or water extracts at the concentration of 100$\mu$ g/ml. In the in vivo study, the highest proliferation of splenocytes was seen in the mice orally administrated with the AST water extract at the concentration of 500mg/kg body weight. In the case of cytokine production, there were no significant differences in the production of IL-1$\beta$and IL-6 among the treated groups and the control. However, TNF-$\alpha$released by activated peritoneal macrophages were augmented by the oral administration of AST water extract. These results indicate that AST may enhance the immune functions by regulating splenocyte proliferation and cytokine production capacity in mice.

Mass Culture of Ultra-small Rotifer, Synchaeta kitina at the Exchange Rate of Culture Water and Initial Inoculation Density (환수율 및 접종밀도에 따른 초소형 rotifer, Synchaeta kitina의 대량배양)

  • Oh, Jeong-Soo;Park, Jin-Chul;Park, Heum-Gi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.4
    • /
    • pp.354-359
    • /
    • 2009
  • The productivity of ultra-small rotifer, Synchaeta kitina was investigated at the exchange rate of culture water (10, 20, 30, 40 and 50%) and initial inoculation densities (250, 600 and 900 inds. per mL) in semi-continuous culture. Also, the possibility of mass culture was investigated in a 100 L culture tank. Tetraselmis suecica was used as the feed for S. kitina in all experiments. The production of S. kitina increased with an increase in exchange rate of culture water. The highest production ($82.0{\times}10^5$ inds.) was achieved at 40% exchange rate of culture water. The production of S. kitina increased with an increase of initial inoculation density during the first week and the highest total production ($17.4{\times}10^6$ inds.) was achieved at 900 inds. per mL of initial inoculation density. However, on the second week, all treatments were not significantly different in total production (P>0.05). During the two weeks, total production of S. kitina at 900 inds. per mL of initial inoculation density was higher than at 600 inds. of initial inoculation density, but there was no significant difference (P>0.05). In the 100 L culture tank, density of S. kitina was kept from 516 to 890 inds. per mL and S. kitina was daily harvested $15.5{\times}10^6$ to $26.7{\times}10^6$ during the experimental period. The production cost for 100 million rotifers in semi-continuous culture was 63,656 won. The results from this study indicate that the optimal exchange rate of culture water and initial inoculation density for the semi-continuous culture of ultra-small rotifer, S. kitina are 40% and 600 inds. per mL, respectively.

The Immunomodulating Effects of the Supplementation of Paeonia Japonica Extracts in Mice

  • Kim, Jin;Kim, Hyun-Sook
    • Nutritional Sciences
    • /
    • v.5 no.2
    • /
    • pp.60-67
    • /
    • 2002
  • Paeonia japonica var. pilosa $N_{AKAI}$, (PJ; Baek-Jak-Yak) is a medicinal plant which has been widely used as a component or blood-building decoctions. This study was performed to investigate the immunomodulative effects of PJ in mice, using in vitro and in vivo experiments. The immunomodulative effects were studied in vitro by determining the proliferation or mice splenocytes and the production of three kinds of cytokines (IL-1$\beta$, IL-6, TNF-$\alpha$) by mire peritoneal macrophages which were cultured with sequential fractions of PJ methanol extract (methanol, hexane, chloroform, ethylacetate, butanol and water). In an in vivo experiment using mice, different concentrations of PJ water extract were orally administrated every other day for two weeks. The production of cytokines (IL-1$\beta$, IL-6, TNF-$\alpha$) secreted by activated macrophages, and the proliferation of mice splenocytes, were used as indices for immunocompetence. In vitro supplementation using a hexane fraction of PJ in the range of 1 to 100 $\mu$ g/ml enhanced splenocyte proliferation by 1.8 to 12%, and by 10-15% using an aqueous fraction, compared to the control. IL-l$\beta$ production was significantly increased with the supplementation of butanol, hexane and water extracts of PJ Higher levels of IL-6 production were detected with supplementation of chloroform or water extracts. However, there were no significant differences in the production of TNF-$\alpha$ among the treated groups and the control. From the in vivo study, the highest proliferation of splenocytes was seen in the mice orally administrated with the PJ water extract at the concentration of 500 mg/kg body weight. In the case of cytosine production, IL-1-$\beta$, IL-6, and TNF-$\alpha$ released by activated peritoneal macrophages were augmented by the oral administration of a PJ water extract. These results indicate that Pl may enhance the immune function by regulating splenocyte proliferation and cytokine production capacity in mice.

Effects of Controlled Drainage Systems on Soybean (Glycine max L.) Growth and Soil Characteristics in Paddy Fields

  • Lee, Sanghun;Jung, Ki-Yuol;Chun, Hyen Chung;Choi, Young Dae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.2
    • /
    • pp.134-142
    • /
    • 2017
  • Crop production in rice paddy fields is of great importance because of declining rice consumption and the low self-sufficiency ratio for field crops in Korea. A controlled drainage system (CDS) is recognized as an effective means to adjust water table (WT) levels as needed and control soil water content to improve the soil environment for optimum crop growth. The present study evaluated the effects of a CDS on soil characteristics, including soil water distribution and soybean development in paddy fields. The CDS was installed with two drain spacing (3 m and 6 m) at the experimental paddy field at the National Institute of Crop Science, Miryang, Korea. It was managed with two WT levels (0.3 m and 0.6 m) during the growing season. Soil water content, electrical conductivity and plant available nitrogen content in the soil were significantly greater in the 0.3 m WT management plots than in the 0.6 m plot and the control. At the vegetative stage, chlorophyll content was significantly lower with higher WT control because of excess soil moisture, but it recovered after the flowering stage. Soybean yield increased with WT management and the 0.6 m WT treatment produced the greatest grain yield, $3.38ton\;ha^{-1}$, which was 50% greater than that of the control. The CDS directly influenced outflow through the drains, which significantly delayed nutrient loss. The results of this study indicated that WT management by CDS can influence soil characteristics and it is an important practice for high yielding soybean production in paddy fields, which should be considered the crop growth stages for stable crop production.

The Evaluation of Integrated Agricultural Resource Management Policy through Water-Energy-Food Nexus - An Application to Management of Aquifer Recharge Project - (물-에너지-식량 넥서스를 활용한 통합적 농업자원관리정책 평가 - 지하수 함양 사업을 중심으로 -)

  • Sung, Jae-hoon;Lee, Hyun-jung;Cho, Wonjoo
    • Journal of Korean Society of Rural Planning
    • /
    • v.25 no.4
    • /
    • pp.35-45
    • /
    • 2019
  • Korean agriculture experienced rapid changes in its production structure to respond fluctuations on external conditions, and these changes have increased the dependence between agricultural resources and negative environmental externalities from agricultural production. As a tool for managing agricultural resources and reducing negative environmental effects from agricultural production, this study employs water-energy-food nexus for integrated resource management. To show the necessity of an integrated approach, this study evaluated three policy scenarios including changes in capital interest, water capacity, and energy cost. The results show that three scenarios have unintended consequences for farmers' incomes and their use of resources. Also the unintended consequences of government policies also affected farms' vulnerability to environmental changes. In particular, the expansion of financing for the establishment of non-circulating water curtain facilities did not have a significant effect on the crop switching of farms. In addition, increasing the amount of available water through the aquifer recharge project leads to the installation of non-circulating water curtain facilities in zucchini farm. It raises dependence on groundwater in agricultural production, thereby increasing farmers' vulnerability to groundwater shortages. These results imply that the agricultural sector needs to consider the interrelationship between agricultural resources when designing or evaluating policies.

Assessment and Analysis of Coal Seam Gas Water Management Study for Water Resource Production 2. Prediction of Treatment Technology and Design of Co-treatment System (물 자원 생산을 위한 Coal Seam Gas Water Management Study의 평가 및 분석 2. 처리기술 예측 및 병합 시스템 설계)

  • Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1629-1637
    • /
    • 2015
  • To develop various usable water from coal seam gas (CSG) water that needs to be pumped out from coal seams for methane gas production, a feasibility study was carried out, evaluating and analysing a recent report (Coal Seam Gas Water Management Policy 2012) from Queensland State Government in Australia to suggest potential CSG water treatment options for fit-for-purpose usable water production. As CSG water contains intrinsically high salinity-driven total dissolved solid (TDS), bicarbonate, aliphatic carbon, $Ca^{+2}$, $Mg^{+2}$ and so on, it was found that appropriate treatment technologies are required to reduce the hardness below 60 mg/L as $CaCO_3$ by setting the reduction rates of $Ca^{+2}$, $Mg^{+2}$ and Na+ concentrations, as well as TDS reduction. Also, Along with fiber filtration and membrane separation, an oxidation degradation process was found to be required. Along with salinity reduction, as CSG water contains organic compounds (TOC: 248 mg/L, $C_6-C_9$: <20 mg/L and $C_{10}-C_{36}$: <60 mg/L), compounds with relatively high molecular weights ($C_{10}-C_{36}$) need to be treated first. Therefore, this study suggests a combined system design with filtration (Reverse osmosis) and oxidation reduction (electrolysis) technologies, offering proper operating conditions to produce fit-for-purpose usable water from CSG water.

Projecting the climatic influences on the water requirements of wheat-rice cropping system in Pakistan (파키스탄 밀-옥수수 재배시스템의 기후변화를 반영한 필요수량 산정)

  • Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.486-486
    • /
    • 2018
  • During the post green revolution era, wheat and rice were the main crops of concern to cater the food security issues of Pakistan. The use of semi dwarf high yielding varieties along with extensive use of fertilizers and surface and ground water lead to substantial increase in crop production. However, the higher crop productivity came at the cost of over exploitation of the precious land and water resources, which ultimately has resulted in the dwindling production rates, loss of soil fertility, and qualitative and quantitative deterioration of both surface and ground water bodies. Recently, during the past two decades, severe climate changes are further pushing the Pakistan's wheat-rice system towards its limits. This necessitates a careful analysis of the current crop water requirements and water footprints (both green and blue) to project the future trends under the most likely climate change phenomenon. This was done by using the FAO developed CROPWAT model v 8.0, coupled with the statistically-downscaled climate projections from the 8 Global Circulation Models (GCMs), for the two future time slices, 2030s (2021-2050) and 2060s (2051-2080), under the two Representative Concentration Pathways (RCPs): 4.5 and 8.5. The wheat-rice production system of Punjab, Pakistan was considered as a case study in exploration of how the changing climate might influence the crop water requirements and water footprints of the two major crops. Under the worst, most likely future scenario of temperature rise and rainfall reduction, the crop water requirements and water footprints, especially blue, increased, owing to the elevated irrigation demands originating from the accelerated evapotranspiration rates. A probable increase in rainfall as envisaged by some GCMs may partly alleviate the adverse impacts of the temperature rise but the higher uncertainties associated with the predicated rainfall patterns is worth considering before reaching a final conclusion. The total water footprints were continuously increasing implying that future climate would profoundly influence the crop evapotranspiration demands. The results highlighted the significance of the irrigation water availability in order to sustain and improve the wheat-rice production system of Punjab, Pakistan.

  • PDF

Effects of Gamioncheong-decoction Water-extract on Anti-inflammation, Anti-oxidation and Skin Whitening (가미온청음(加味溫淸飮) 추출물이 항염증, 항산화 및 미백에 미치는 효과)

  • Choi, You Jin;Roh, Jeong Du
    • Journal of Acupuncture Research
    • /
    • v.32 no.3
    • /
    • pp.117-126
    • /
    • 2015
  • Objectives : This study was an analysis of the anti-inflammatory, anti-oxidative and skin whitening properties of Gamioncheong-decoctione(GMOCD) extract. Methods : GMOCD(96 g) and 2 L of distilled water were heated at $100^{\circ}C$ for four hours and then concentrated, frozen, freeze-dried, dissolved in distilled water and filtered. The following analysis was completed: cell cytotoxic effect using MTT assay, oxidative products of NO by griess assay, concentration of prostaglandin $E_2(PGE_2)$ by commercially competitive enzyme immunoassay, and cytokines($IL-1{\beta}$, IL-6 and TNF-${\alpha}$) by Bio-Plex$^{(R)}$ Suspension Array System's Bio-Plex Pro$^{TM}$ mouse cytokine, chemokine, and growth factor assay. Anti-oxidative effect was measured using the DPPH method and skin whitening effect using tyrosinase inhibition assay. Results : GMOCD water-extract did not show any toxicity at all doses and cell viability was more than 90 % at all doses. GMOCD water-extract significantly inhibited NO production at doses of 100, 200, $400{\mu}g/ml$, significantly inhibited $PGE_2$ production at doses of 200 and $400{\mu}g/ml$ and reduced the LPS-induced IL-$1{\beta}$, IL-6 and TNF-${\alpha}$ production in a dose-dependent manner. $IL-1{\beta}$ production was significantly reduced at a dose of $400{\mu}g/ml$ and IL-6 production was significantly reduced at doses of 200 and $400{\mu}g/ml$. DPPH free radical scavenging capability had a skin whitening effect rate of more than 50%. Tyrosinase inhibition activity was apparent in a dose-dependent manner. Conclusions : This study suggests that GMOCD water-extract suppressed NO and $PGE_2$ production and inhibited cytokines($IL-1{\beta}$, IL-6 and TNF-${\alpha}$). GMOCD also improved DPPH free radical scavenging capability. GMOCD water-extract increased tyrosinase inhibitory activity in a dose-dependent manner but this was not a statistically significant result.

Cultural Conditions for the Production of Organic Acid During (Aspergillus awamori var. kawachii에 의한 쌀 Koji 제조시 유기산의 생산조건)

  • 소경환
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.4
    • /
    • pp.287-293
    • /
    • 1993
  • This study was carried out to investigate the influences of cultural conditions of koji on the production of organic acid during rice-koji making by Aspergillus awamori var. kawachii which is now widely used as koji-mold in brewing Takju and Yakju in Korea. The optimum temperature for the germination of the conidia of the mold was 35'8, and the time required for germination at this temperature was 8 hours. Rapid germination occurred when the water content of steamed rice was above 40%, but germination retardation occurred markedly below 35%. The optimum cultural temperature for the production of organic acid was 32$^{\circ}C$, and the production of organic acid was markedly restricted at 36$^{\circ}C$ and 4$0^{\circ}C$. It was effective for the high production of both saccharogenic amylase and organic acid to shift the cultural temperature from initial 36$^{\circ}C$ to 32$^{\circ}C$ after 20~25 hours of cultivation. Initial water content suitable to the production of organic acid was 40% in steamed rice, but its production was markedly restricted below 30% of water content. When the quantity of conidial inoculation was too small, the production of organic acid was low in initial phase, but it was retrived at later period. Acid production was markedly restricted together with the increase in koji thickness.

  • PDF