• 제목/요약/키워드: production water

검색결과 6,083건 처리시간 0.047초

수소수 급수시 오리생산성에 미치는 영향 -현장연구를 중심으로- (Effects of Using Hydrogen Water on Duck Production in A Field Study)

  • 정태호
    • 한국환경과학회지
    • /
    • 제31권3호
    • /
    • pp.291-294
    • /
    • 2022
  • This study was conducted to investigate the effect of hydrogen water on duck production in a field study. A total of 600 one-day-old ducks (Pekin) were randomly allotted to two treatment groups with three replicates each having 100 birds per pen in a completely randomized design. The duck production parameters measured included weight gain, feed intake, and feed efficiency. For duck drinking water, general water supplied from the farm was used as the control, and hydrogen water was supplied by installing a device that generates hydrogen (T1 groups). There was no statistical significance in duck weight gain between the two treatment groups (p>0.05). In addition, no significant difference in feed intake was found in both the control and T1 groups (p>0.05), and the range of values was similar. Feed efficiency was not significant different between the treatment groups (p>0.05), and there was no remarkable difference in the range of vaules. These results indicate that hydrogen water did not influence duck production.

CBM 저류층의 생산성 예측을 위한 표준곡선 모델의 적합성 평가 연구 (A Study on the Conformity Assessment of Type Curve Models to Predict Production Performance in Coalbed Methane Reservoirs)

  • 김창균;이정환
    • 한국가스학회지
    • /
    • 제22권2호
    • /
    • pp.34-45
    • /
    • 2018
  • 석탄층 메탄가스(CBM) 저류층은 탄화과정 중에 탄리(cleat)가 물로 채워지게 되며, 탄리 내 물의 거동이 CBM 생산거동에 영향을 미칠 수 있다. 따라서 정확한 생산 자료 분석을 수행하기 위해서는 탄리 내 물 포화도가 CBM 생산에 미치는 영향을 고려해야 한다. 이에 본 연구에서는 서로 다른 물 포화도 조건을 갖는 CBM 저류층에 표준곡선(type curve) 분석을 수행하고 조건별 적합도를 평가하였다. CBM 생산 자료를 취득하기 위해 CMG사(社)의 GEM을 이용하여 물 완전포화, 중간포화, 불포화 상태의 저류층 모델을 구축하였으며, Fetkovich, Palacio-Blasingame(P-B), Agarwal-Gardner (A-G) 표준곡선 분석을 수행하였다. 그 결과, 불포화 CBM의 경우 Fetkovich 표준곡선이 후기 시간 영역에서 일치(matching)가 잘 이루어지지 않는 반면 A-G 표준곡선 모델에 우수한 일치를 나타내었다. 또한 중간 포화 CBM 생산 자료는 후기 시간 영역에서 표준곡선 모델 모두와 잘 일치되는 것을 확인하였다. 완전 포화 조건의 경우 최대 생산량(qpeak)이후 적은 양의 생산 자료만을 이용해서도 P-B와 A-G 표준곡선에 정확하게 일치되었으며, 이를 기반으로 특정 물 포화도 조건에서 각 표준곡선이 갖는 장 단점이 분석되었다. 따라서 CBM 개발 시 물 포화도 조건에 따라 적합한 표준곡선을 선택함으로써 CBM 저류층의 정확한 생산 자료 분석이 가능할 것으로 판단된다.

생산함수를 이용한 농업용수 관개량과 벼 생산성간 관계 평가 (Relationship Assessment on Amount of Irrigation Water & Productivity of Rice by Production Function)

  • 허승오;최순군;엽소진;홍성창;최동호
    • 한국환경농학회지
    • /
    • 제38권3호
    • /
    • pp.133-138
    • /
    • 2019
  • BACKGROUND: Production function gives the equation that shows the relationship between the quantities of productive factors used and the amount of product obtained, and can answer a variety of questions. This study was carried out to evaluate the relationship between irrigation water used for rice production and rice productivity by the production function which shows the mathematical relation between input and output. METHODS AND RESULTS: The statistical data on rice production and on the amount of irrigation water were used for the production function analysis. The analysis period was separated for 1966-1981 and 1982-2011, based on goal's change on agriculture from 'increasing food' to 'complex farming'. The relation between irrigation and yield considering production function is a short-term production function both before and after 1982. These results can be expressed by the sigmoid relation. When comparing the graphs of the two analyzed periods, there are differences in quantity between the maximum point and the minimum point during the same analysis period, which can be called an 'Irrigation Effect' by the difference of irrigation, and 'Technical Effect' by the difference by inputs like as fertilizers etc. CONCLUSION: The results could be useful as information for assessing the relationship between agricultural water and the productivity of rice and predicting rice productivity by irrigation water in Korea.

낙동강 하구 해양환경 및 기상 요인이 김P(orphyra yezoensis) 생산량 변화에 미치는 영향 (Effects of Meteorological and Oceanographic Properties on Variability of Laver Production at Nakdong River Estuary, South Coast of Korea)

  • 권정노;심정희;이상용;조진대
    • 한국수산과학회지
    • /
    • 제46권6호
    • /
    • pp.868-877
    • /
    • 2013
  • To understand the effects of marine environmental and meteorological parameters on laver Porphyra yezoensis production at Nakdong River Estuary, we analyzed marine environmental (water temperature, salinity, nutrients, etc.) and meteorological properties (air temperature, wind speed, precipitation, sunshine hours) with yearly and monthly variations in laver production over 10 years (2003-2013). Air and water temperature, wind speed, sunshine hours and precipitation were major factors affecting yearly variability in laver production at the Nakdong River Estuary. Lower air and water temperatures together with higher levels of nutrients and sunshine and stronger wind speeds resulted in higher laver harvests. Salinity and nitrogen did not show clear correlations with laver production, mainly due to the plentiful supply of nitrogen from river discharge and the low frequency of environmental measurements, which resulted in low statistical confidence. However, environmental factors affecting monthly laver production were related to the life cycle (culturing stage) of Porphyra yezoensis and were somewhat different from factors affecting annual laver production. In November, a young laver needs lower water temperatures for rapid growth, while a mature laver needs much stronger winds and more sunshine, as well as lower temperatures for massive production and effective photosynthesis, mostly in December and January. However, in spring (March), more stable environments with fewer fluctuations in air temperature are needed to sustain the production of newly deployed culture-nets ($2^{nd}$ time culture). These results indicate that rapid changes in weather and marine environments caused by global climate change will negatively affect laver production and, thus, to sustain the yield of and predict future variability in laver production at the Nakdong River estuary, environmental variation around laver culturing farms needs to be monitored with high resolution in space and time.

태양광 발전 연계 수전해 시스템의 경제성 분석 (Techno-Economic Analysis of Water Electrolysis System Connected with Photovoltaic Power Generation)

  • 황순철;박진남
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.477-482
    • /
    • 2021
  • Hydrogen production, hydrogen production cost, and utilization rate were calculated assuming four cases of hydrogen production system in combination of photovoltaic power generation (PV), water electrolysis system (WE), battery energy storage system (BESS), and power grid. In the case of using the PV and WE in direct connection, the smaller the capacity of the WE, the higher the capacity factor rate and the lower the hydrogen production cost. When PV and WE are directly connected, hydrogen production occurs intermittently according to time zones and seasons. In addition to the connection of PV and WE, if BESS and power grid connection are added, the capacity factor of WE can be 100%, and stable hydrogen production is possible. If BESS is additionally installed, hydrogen production cost increases due to increase in Capital Expenditures, and Operating Expenditure also increases slightly due to charging and discharging loss. Even in a hydrogen production system that connects PV and WE, linking with power grid is advantageous in terms of stable hydrogen production and improvement of capacity factor.

특허분석에 의한 수전해 수소제조 기술동향 (Technology Trend for Water Electrolysis Hydrogen Production by the Patent Analysis)

  • 황갑진;강경석;한혜정;김종욱
    • 한국수소및신에너지학회논문집
    • /
    • 제18권1호
    • /
    • pp.95-108
    • /
    • 2007
  • There are several methods for the hydrogen production such as steam reforming of natural gas, photocatalytic method, biological method, electrolysis and thermochemical method, etc. These days it has been widely studying for the hydrogen production method having low hydrogen production cost and high efficiency. In this paper, patents in the hydrogen production by water electrolysis were gathered and analyzed. The search range was limited in the open patents of USA(US), European Union(EP), Japan(JP), and Korea(KR) from 1996 to 2005. Patents were gathered by using key-words searching and filtered by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.

The water-energy-food resources and environment: Evidence from selected SAARC countries

  • Mansoor, Abdul;Sultana, Baserat;Shafique, Saima;Zaman, Khalid
    • Advances in Energy Research
    • /
    • 제6권1호
    • /
    • pp.1-15
    • /
    • 2019
  • The objective of the study is to examine the relationship between water resources, energy demand, food production, and environmental pollutants in selected SAARC nations, namely, Bangladesh, India, Pakistan, and Sri Lanka, during the period of 1990-2016. The results show that water, energy, and food (WEF) resources substantially affected air quality in the form of high mass carbon emissions, fossil fuel energy demand, methane discharges, nitrous oxide emissions, and greenhouse gas emissions in these countries. Food production and food deficit largely increase $CO_2$ emissions due to unsustainable production and malnutrition, while land use under cereal production increases $CH_4$ and $N_2O$ emissions. Electricity production escalates $CO_2$ emissions and fossil emissions across countries. The results support the carbon EKC hypothesis, while monotonic increasing function exists in case of fossil fuel energy. The study emphasizes the need to ensure environmental sustainability agenda by adopting cleaner production technologies in WEF resources.

양극 산화된 $TiO_2$ nanotube를 이용한 수소 생산 연구 (Hydrogen production by anodized $TiO_2$ nanotube under UV light irradiation)

  • 홍원성;박종혁;한귀영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.495-498
    • /
    • 2008
  • Photocatalytic water splitting into $H_2$ and $O_2$ using semiconductors has received much attention, especially for its potential application to direct production of $H_2$ for clean energy from water utilizing solar light energy. Since the report of Fujishima and Honda on the water splitting by photoelectrochemical cells, numerous different semiconducting materials have been used as photocatalysts for hydrogen generation from water. Among them, platinized titania significantly accelerates hydrogen production from water. For geometrical improvement of $TiO_2$ particle, porous $TiO_2$ structure was proposed and studied such as nanofiber, nanorod and nototubes. This research focuses on finding out the optimum temperature and electrolyte to produce $H_2$ by solar water splitting.

  • PDF

수분 섭취의 증가가 닭의 고온 스트레스 완화에 미치는 효과 (Effect of Increased Water Intake on the Alleviation of Heat Stress in Chicken)

  • 이봉덕
    • 한국가금학회지
    • /
    • 제21권2호
    • /
    • pp.93-99
    • /
    • 1994
  • Chickens subjected to heat stress decrease their heat production by consuming less feed. The lowered feed intake naturally brings about decreased production performance of chicken. The only exception to this is the increased survivability. Birds drink less when they eat less. In hot enviror-mental temperature, chicken need more water for increased heat loss through evaporation an increased urine excretion. Thus, the increased water intake may alleviate the heat stress of chicken. Various electrolytes supplementation to feed or drinking water can alleviate the heat stress of chicken by their effect of increasing water intake. Lasalocid, an ionophorous coccidiostat, was found to have the effect of increasing water consumption of chicken, thereby improving the lowered production performance of heat-stressed chicken. Finally, dietary fiber could be another possible element which can exert beneficial effects on heat-stressed chicken.

  • PDF