• Title/Summary/Keyword: production boundary

Search Result 314, Processing Time 0.023 seconds

The Characteristics of the Popular Culture Contemporary Fashion Shows -Focus on Pret-a-Porter Collections after the Mid of 1990s- (현대패션쇼의 대중문화적 특성(제2보) -1990년대 중반이후 기성복컬렉션을 중심으로-)

  • 장안화;박민여
    • Journal of the Korean Society of Costume
    • /
    • v.54 no.5
    • /
    • pp.1-12
    • /
    • 2004
  • This Study has examined characteristics of the popular culture of the contemporary fashion show by each element as follows The fashion show place expanded its area when It moved its center because of not only the use of ordinary and public friendly place but also adjacent places post-modernism thought. The installation stage was produced by organic combination with the stage using object: The technology for the stage has produced dynamic variability and variety enough to expand the stage. The dramatic element of production technique was introduced to the fashion show to shorten gap with ordinary life and transfer a theme by facial expressions, gesture and pose. etc of a model In addition. its performance element combines other genre freely to be one time and viewers' participating type technique. At the minimalism element, clothing functions moderately as main factor of the fashion show: Technical elements are added to emphasize future Images. At sound tracks and sound effects, the show's overall atmosphere has been revived to remake various genre of music and improve images. At the fashion model, objective appearance boundary is collapsed to expand model concept and make tools of their own. The fashion show has external values of active movement of associated industry as well as economic boost enough to produce jobs, and internal values to provide aesthetic rest and satisfactions to let the ones. who are isolated from recreation values and the society, establish friendly relations with the society

A Numerical Study on the Improvement of the Performance of a Vehicle Paint Drying Process (자동차 도장 건조 공정의 건조 성능 향상을 위한 수치해석 연구)

  • Choi, Jongrak;Hur, Nahmkeon;Kim, Dongchoul;Kim, Hee-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.12
    • /
    • pp.867-874
    • /
    • 2012
  • In the present study, three-dimensional transient numerical simulations were carried out to improve the performance of a vehicle paint drying process. In order to describe the movement of a vehicle, the techniques of moving boundary condition and multiple reference flames (MRF) were used. For the validation of the numerical analysis, the predicted temperature on the surface of a vehicle was compared to the experimental data, and a good agreement was achieved. With validated numerical procedure, various operating conditions of the temperature and the flow rate of the supply air were investigated to improve the drying performance of the facility. It is shown that the optimization of the operating condition can lead to energy savings and faster line speed of the production.

Microstructure Analysis with Preparation Condition of Electrolyte Membrane for High Temperature Electrolysis (고온 수전해 전해질 막의 제막조건에 따른 미세구조 분석)

  • Choi, Ho-Sang;Son, Hyo-Seok;Hwang, Gab-Jin;Bae, Ki-Kwang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.141-148
    • /
    • 2006
  • This study was carried out to analyze the microstructure characteristics of electrolyte membrane through XRD, SEM and AC impedance measurement for using in high temperature steam electrolysis(HTE). It was investigated that thermal stability and electric characteristics by sintering condition using dry and wet process, and confirmed growth of particle and density change by sintering temperature. The sintering temperature and behavior had an effect on the relative density of the ceramic and the average grain size. The more amount of dispersant in organic compound increase, the more the density increased. But the binder was shown opposite phenomenon. It was analyzed that electrolyte resistance and electrical characteristics using AC impedance. The electrical properties of YSZ grain boundary changed with the sintering temperature.

A Study On the Combined One Body Stamping Using F.E.A. (유한요소해석을 이용한 일체복합성형성에 대한 연구)

  • Kwon S. Y.;Lee J. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.171-175
    • /
    • 2005
  • Automotive parts manufacturers are doing their best to strengthen the competitiveness. They are developing a large variety of new manufacturing technologies to reduce the manufacturing cost. Combined One Body Stamping(C.O.B.S) is one of the remarkable technologies to reduce production cost. C.O.B.S makes possible to form several parts together in a process using only one die set while conventional stamping demands the same number of die sets to the number of parts. But the deformation mechanism in C.O.B.S is more complicated because the interactions between blanks. So the interaction effects should be considered in the stage of initial blank shape design. In the study, a blank design method to consider the interactions between blanks was proposed and verified through the simulations and experiments. A commercial incremental FE code, LS-Dyna, was used to simulate the C.O.B.S Process. And a reverse one step FE code, Hyper Form, was used to predict initial blank shape. The boundary conditions of the reverse one step FE analysis were determined by the proposed method.

  • PDF

A semi-analytical study on the nonlinear pull-in instability of FGM nanoactuators

  • Attia, Mohamed A.;Abo-Bakr, Rasha M.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.451-463
    • /
    • 2020
  • In this paper, a new semi-analytical solution for estimating the pull-in parameters of electrically actuated functionally graded (FG) nanobeams is proposed. All the bulk and surface material properties of the FG nanoactuator vary continuously in thickness direction according to power law distribution. Here, the modified couple stress theory (MCST) and Gurtin-Murdoch surface elasticity theory (SET) are jointly employed to capture the size effects of the nanoscale beam in the context of Euler-Bernoulli beam theory. According to the MCST and SET and accounting for the mid-plane stretching, axial residual stress, electrostatic actuation, fringing field, and dispersion (Casimir or/and van der Waals) forces, the nonlinear nonclassical equation of motion and boundary conditions are obtained derived using Hamilton principle. The proposed semi-analytical solution is derived by employing Galerkin method in conjunction with the Particle Swarm Optimization (PSO) method. The proposed solution approach is validated with the available literature. The freestanding behavior of nanoactuators is also investigated. A parametric study is conducted to illustrate the effects of different material and geometrical parameters on the pull-in response of cantilever and doubly-clamped FG nanoactuators. This model and proposed solution are helpful especially in mechanical design of micro/nanoactuators made of FGMs.

Construction of a System for the Generation and Analysis of Design Waves using the Genetic Algorithms (유전자 알고리즘을 이용한 설계파 생성 및 해석 시스템 구축)

  • Jeong, Seong-Jae;Shin, Jong-Keun;Choi, Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.96-102
    • /
    • 2006
  • In this study, an optimization routine with genetic algorithms is coupled for the selection of free variables for the production of a control signal for the motion of wave board in the numerical wave tank. An excitation function for the controlling of the wave board is formulated on basis of amplitude modulation for the generation of nonlinear wave packets. The found variables by the optimization serve for the determination of wave board motion both with the computation and with the experiment. The breaking criterion of the water waves is implemented as boundary condition for the optimization procedure. With the analysis of the time registration on the local position in the wave tank the optimization routine is accomplished until the given design wave with defined surface elevation is found. Water surface elevation and associated fields of velocity and pressure are numerically computed.

A preliminary study on modeling for University Archives Management System (대학기록물관리시스템 모델링(Modeling)을 위한 기초 연구)

  • Yi, Ah-hyun
    • The Korean Journal of Archival Studies
    • /
    • no.9
    • /
    • pp.164-189
    • /
    • 2004
  • This paper illustrates preliminary modeling for University Archives Management System(UAMS) construction. University must install Intermediate Archives(records and archives) facilities and management system by Public Records and Archives Act(PRA). But it is very difficult to generalize UAMS because University co-exists public and its own characteristic. For UAMS modeling, this paper first identifies University document's production creators and documental boundary. Then it is studied how University archives management is operated and what archives system by PRA means in University. Second systematic connection plan of Intermediate Archives(records and archives) facilities and manuscripts management is surveyed through National Universities and complementary things are presented. Finally through the above study UAMS model is suggested as future-oriented University archives management. UAMS model suggested from this study includes as follows. First manuscripts management as present Records and Archives system's standard function extension. Second manuscripts management system as system management area's extension using in Universities. It is desirable to extend to expert archives system. Finally integrated operating system model for using actively records, archives and manuscripts management systems operating in Universities.

A Study on Rotary Swaging Process Simulation using DEFORM (DEFORM을이용한 로터리 스웨이징 공정의 시뮬레이션에 대한 연구)

  • Lim, Dong-jae;Chung, Won-Jee;Sul, Sang-Suk;Kim, Dae-Young;Choi, Kyung-Shin;Cha, Tae-Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.106-112
    • /
    • 2019
  • Rotary swaging is a method of forging automotive drive shafts. In this paper, we propose a new two-hammer forging technique by applying the problem-solving approach TRIZ to improve the efficiency and productivity of the rotary swaging automation process. We will simplify the materials and hammers via the 3D modeling tool SolidWorks for high accuracy of a comparative analysis of existing and proposed methods under the same boundary conditions. In addition, we will compare the stress trends of the proposed model using ANSYS Workbench and verify the feasibility through a comparison of the simulation results using DEFORM. Relative to the existing method, the proposed method can decrease production costs and improve efficiency of the automation process by reducing the power source.

Study of User Reuse Intention for Gamified Interactive Movies upon Flow Experience

  • Han, Zhe;Lee, Hyun-Seok
    • Journal of Multimedia Information System
    • /
    • v.7 no.4
    • /
    • pp.281-293
    • /
    • 2020
  • As Christine Daley suggested, "interaction-image" is considered to be typical in the age of "Cinema 3.0", which integrates the interactivity of game art and obscures the boundary between producers and customers. In this case, users are allowed to involve actively in the scene as "players" to manage the tempo of the story to some extent, it, thus, makes users pleased to watch interactive movies repeatedly for trying a diverse option to unlock more branch lines. Accordingly, this paper aims to analyze the contributory factors and effect mechanism of users' reuse intention for gamified interactive movies and offer specific concepts to improve the reuse intention from the interactive film production and operation perspectives. Upon integrating the Flow theory and Technology Acceptance Model (TAM) and separating the intrinsic and extrinsic motivations of key factors based on Stimulus-Organism-Response (S-O-R), the research builds an empirical analysis model for users' reuse intention with cognition, design, attitude emotional experience and conducts an empirical analysis on 425 pieces of valid sample data applying SPSS22 and Amos23. The results show that user satisfaction and flow experience impact users' reuse intention highly and perceived usefulness, perceived ease of use, perceived enjoyment, remote perception, interactivity, and flow experience have significant positive influence on user satisfaction experience.

Vibration of multilayered functionally graded deep beams under thermal load

  • Bashiri, Abdullateef H.;Akbas, Seref D.;Abdelrahman, Alaa A.;Assie, Amr;Eltaher, Mohamed A.;Mohamed, Elshahat F.
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.545-557
    • /
    • 2021
  • Since the functionally graded materials (FGMs) are used extensively as thermal barriers in many of applications. Therefore, the current article focuses on studying and presenting dynamic responses of multilayer functionally graded (FG) deep beams placed in a thermal environment that is not addressed elsewhere. The material properties of each layer are proposed to be temperature-dependent and vary continuously through the height direction based on the Power-Law function. The deep layered beam is exposed to harmonic sinusoidal load and temperature rising. In the modelling of the multilayered FG deep beam, the two-dimensional (2D) plane stress continuum model is used. Equations of motion of deep composite beam with the associated boundary conditions are presented. In the frame of finite element method (FEM), the 2D twelve-node plane element is exploited to discretize the space domain through the length-thickness plane of the beam. In the solution of the dynamic problem, Newmark average acceleration method is used to solve the time domain incrementally. The developed procedure is verified and compared, and an excellent agreement is observed. In numerical examples, effects of graduation parameter, geometrical dimension and stacking sequence of layers on the time response of deep multilayer FG beams are investigated with temperature effects.