• Title/Summary/Keyword: production and construction of module

Search Result 62, Processing Time 0.027 seconds

A Study on the Supply Process of Unit Modular Housing through a Comparison of Cases

  • Kim, Kyoon-Tai;Jun, Young-Hun;Kim, Tae-Yeong
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.411-414
    • /
    • 2015
  • The purpose of this study is to conduct a comparative analysis between Korea and the United States of the supply process of unit modular housing at both the factory production phase and the transportation and lifting phase, as part of an attempt to invigorate the unit modular housing market in Korea. Unlike the practice in the United States, one of Korea's unique characteristics is that the floor is constructed with reinforced concrete and hot water heating system. To do this, the wet method in Korea is used that includes concrete placement, curing and constructing hot water floor heating system at the factory production phase, which results in a longer production time and also requires the lifting of heavier loads. In the United States, interior and exterior finishing works of modular housing are performed by different companies, and the distance between the unit module factory and the construction site is quite far. This kind of dualized production structure may cause confusion when it comes to schedule management, procurement management, and stock management. Moreover, problems caused by external environmental factors such as wind and rainfall were reported in the course of long-distance transportation. The results of this case comparison are expected to provide fundamental data that will reduce the amount of trial and error in the unit module production, transportation and lifting work in Korea, which has a comparatively small number of unit modular housing cases.

  • PDF

Present Condition and Development of Mechanical Utility System for Modular Construction (모듈러 건축용 기계설비 시스템 현황 및 개발에 관한 연구)

  • Lee, Jae-Soo;Choi, Jun-Sok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Domestic construction industry has experienced many difficulties as it has been on a downward. It's a way that active modular structure market to solve this problem. However, as Modular structure technical standard in Korea is in the early stages, our modular factory maufactured rate is almost 40% lower than overseas. Besides, there is less design diversity so it just applies for a few buildings like low-rise building and general group barrackes. To deal with these problems, it is essential to modulating the equipment which can improve the production rate. This will help to ensure the quality, shortening of the construction period, the reduction of labor costs. We have defined the name of segmented by each installation location of the equipment to modulating equipment. And it was examined the suitability of the modulating of the location-specific utility system. The results of the analysis are discussed on the page.

  • PDF

A Basic Study on the Arrangement of In-situ Production Module of the Composite PC Members (합성 PC 부재 현장생산배치에 관한 기초 연구)

  • Lee, Goon-Jae;Joo, Jin-Kyu;Lee, Sung-Ho;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.29-30
    • /
    • 2011
  • A Green Frame is a composite Rahmen precast concrete structure that utilizes the advantages of the steel frame and the reinforced concrete. Compared to bearing wall structure, the precast concrete structure may raise construction cost If the precast concrete members are produced in plant. Thus, if the precast concrete members can be produced in site, the cost-effectiveness and quality shall be increased. Various site conditions must be considered and reviewed to ensure a space for the in-situ production. Therefore, this study focuses on the basic study on the arrangement of in-situ production module of composite precast concrete members.

  • PDF

Factory Production Management of Modular Units Using MFD 2019 (MFD 2019를 활용한 모듈러 유닛의 공장생산 관리)

  • Lee, Doo-Yong;Nam, Sung-Hoon;Lee, Jae-Sub;Jung, Dam-I;Kim, Kyoung-rai;Cho, Bong-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.6
    • /
    • pp.139-146
    • /
    • 2019
  • The modular building system is a type of prefabricated construction method, and is an industrialized building system that transports, assembles, and completes a three-dimensional module manufactured in a factory to the site. The economics of a modular building system where 50 to 80% of the entire process takes place in a modular factory is dominated by productivity of the factory manufacturing process. Since the building of the module is finished by the combination of unit parts produced by each material, it is necessary to manage the process in each module unit. However, currently marketed process control programs do not reflect the features of these modular methods. In this paper, we introduce Modular Factory Design software(MFD 2019) that can make modular unit production plan which reflects production base(modular factory) and production target(application and number of modular units). In order to verify software compatibility and reliability, two production plans with different production methods were formulated and simulated.

Investigation for Developing 3D Concrete Printing Apparatus for Underwater Application (수중적층용 3D 콘크리트 프린팅 장비 개발에 대한 연구)

  • Hwang, Jun Pil;Lee, Hojae;Kwon, Hong-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.10-21
    • /
    • 2021
  • Recently, the demand for atypical structures with functions and sculptural beauty is increasing in the construction industry. Existing mold-based structure production methods have many advantages, but building complex atypical structures represents limitations due to the cost and technical characteristics. Production methods using molding are suitable for mass production systems, but production cost, construction period, construction cost, and environmental pollution can occur in small quantity batch production. The recent trend in the construction industry calls for new construction methods of customized small quantity batch production methods that can produce various types of sophisticated structures. In addition to the economic effects of developing related technologies of 3D Concrete Printers (3DCP), it can enhance national image through the image of future technology, the international status of the construction civil engineering industry, self-reliance, and technology export. Until now, 3DCP technology has been carried out in producing and utilizing residential houses, structures, etc., on land or manufacturing on land and installing them underwater. The final purpose of this research project is to produce marine structures by directly printing various marine structures underwater with 3DCP equipment. Compared to current underwater structure construction techniques, constructing structures directly underwater using 3DCP equipment has the following advantages: 1) cost reduction effects: 2) reduction of construct time, 3) ease of manufacturing amorphous underwater structures, 4) disaster prevention effects. The core element technology of the 3DCP equipment is to extrude the transferred composite materials at a constant quantitative speed and control the printing flow of the materials smoothly while printing the output. In this study, the extruding module of the 3DCP equipment operates underwater while developing an extruding module that can control the printing flow of the material while extruding it at a constant quantitative speed and minimizing the external force that can occur during underwater printing. The research on the development of 3DCP equipment for printing concrete structures underwater and the preliminary experiment of printing concrete structures using high viscosity low-flow concrete composite materials is explained.

Economic Evaluation of Underground Parking Lot PC Structural System that is Suitable for Long-Life Housing (장수명주택에 적합한 지하주차장 PC구조시스템의 경제성분석에 관한 연구)

  • Jo, Min-Joo;Kim, Jong-Sung
    • Journal of the Korean housing association
    • /
    • v.26 no.2
    • /
    • pp.103-110
    • /
    • 2015
  • Precast Concrete (PC) construction method can be the one that is suitable for long-life housing due to its merit in respect of maintenance and durability based on crack-free from mass production with indirect construction cost-saving-effect due to shortening construction period comparing to the conventional construction method, but it has the problem that causes the raise of direction construction costs. So, this study analyzed its economic feasibility of PC method whose maintenance and durability are excellent for underground parking lot of apartment house for accomplishing cost-saving long-life housing by applying the various structural system. In evaluation of unit module structural system, two-way PC system requires 10 to 28% more costs for frame work than RC rigid frames, and, one-way PC system 98~112%. Although it varies depending on the method, the costs are similar to RC rigid frame structure, provided a proper method is adopted. Also, Model 11, which was most economical in the evaluation, was applied to an real parking lot and about 2 to 6% of construction costs was reduced than RC rigid frames. This seems to be because, although PC system has a higher production cost, introduction of P.S (prestress) reduces member depth and, therefore, height, as well as the number of members per unit module.

Basic study for development of bottom-up infill module for high rise building (고층 건축물을 위한 bottom-up Infill module 개발 기초 연구)

  • Sung, Soojin;Lim, Chaeyeon;Na, Youngju;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.164-165
    • /
    • 2015
  • Modular construction technique is an adaptation of factory-based mass production concept in ordinary manufacturing industries to construction industry and it assumes that panels, units, etc. are fabricated in factories and assembled in construction sites. Given its structural limitations, modular construction technique is primarily used in low-story buildings whose maximum height is usually five stories, but researchers are actively studying possible adaptation of modular construction technique to high-rise building designs these days as in the case of infill-type modular construction design. Infill-type modular construction technique, most frequently used in high-rise building construction projects, completes frame construction first in reinforced concrete structures and fills unit modules in such structures. However, infill-type modular construction technique leads to longer construction schedule accompanying increase in construction cost, cost overrun due to additional of temporary work, and possible damage to units in the wake of facility construction. Accordingly, this study is performed as a basic study for the development of bottom-up infill-type modular construction technique intended to construct structural frames and fill in units sequentially in a bid to address such drawbacks of current infill-type modular construction technique.

  • PDF

A STUDY ON SELECTING OPTIMAL HAUL ROUTES OF EARTHMOVING MACHINE

  • Han-Seong Gwak;Chang-Yong Yi;Chang-Baek Son;Dong-Eun Lee
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.513-516
    • /
    • 2013
  • Earthmoving equipment's haul-route has a great influence on the productivity of the earth work operation. Haul-route grade is a critical factor in selecting the haul-route. The route that has low grade resistance contributes to increase machine travel speed and production. This study presents a mathematical model called "Hauling-Unit Optimal Routes Selecting system" (HUORS). The system identifies optimal path that maximize the earth-work productivity. It consists of 3 modules, i.e., (1) Module 1 which inputs site characteristic data and computes site location and elevation using GIS(Geographical Information System); (2) Module 2 which calculates haul time; (3) Module 3 which displays an optimum haul-route by considering the haul-route's gradient resistances (i.e., from the departure to the destination) and hauling time. This paper presents the system prototype in detail. A case study is presented to demonstrate the system and verifies the validity of the model.

  • PDF

A Study on Zoning Model Using Web-Cyclone (웹사이클론을 이용한 조닝모듈 개발에 관한 연구)

  • Gwak, Han-Seong;Son, Chang-Back;Lee, Dong-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.115-117
    • /
    • 2012
  • Task based modeling is essential in a construction operation simulation modeling. It allows dealing with local variables or delay factors that affect productivity and improves the reusability of existing operation models. An operation model can secure reality only if it reflects the real construction processes by effectively dealing with zoning issue. However, system users have some difficulties in modeling a construction operation that is consisted of several processes having different production units. Zoning is a major modeling issue when the task based modeling method is implemented using the existing discrete event simulation systems. This paper highlights the difficulty and presents a new method that complements the zoning issues attributed to different production units. The method is described in detail by presenting the flow of entities. It is confirmed that the zoning method effectively deals with the unbalance of production units between processes and facilitates to model an operation model having processes with different production units. The "Zoning module" contributes to increasing accuracy of simulation result.

  • PDF

A Study on the Multi-Channel Large Capacity Charge/Discharge Formation Module (다채널 대용량 충방전기 모듈 개발에 대한 연구)

  • Lee, Jun Ha
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.55-60
    • /
    • 2016
  • This study was developed through the secondary battery module charging/discharger possible utilization in the production process equipment circuit. The developed module is ensuring construction of efficient and productive charging and discharger through this research a limit on the yield and the price of existing single -channel charge and discharger circuit as a 5V 70A grade secondary battery Formation charge and discharger for up to 1 board 4 channels. In order to improve the sensing accuracy, through a robust differential amplifier circuit described using 16bit Analog-Digital Converter and noise was secured 16bit resolution sensing. The configuration also made demands for property Rise / Fall Time. Data Acquisition, discharge efficiency and also to fit the sink circuit temperature level for mass production.