• Title/Summary/Keyword: production activity

Search Result 7,993, Processing Time 0.038 seconds

Submerged Culture of Phanerochaete chrysosporium and Lignin Peroxidase Production (Phanerochaete chrysosporium의 액체 배양 및 Lignin Peroxidase 생산)

  • Park, Se-Keun;Jeong, Myoung-Sun;Kim, Yeong-Kwan
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.343-349
    • /
    • 2001
  • This study characterizes the growth of white rot fungi Phanerochaete chrysosporium IFO 31249) and lignin peroxidase(LiP) activity in different submerged culture media. P. chrysosporium was grown in the form of pellet of various sizes from a spore inoculum under shaking liquid culture condition. While the growth of mycelia was higher under the nitrogen-sufficient culture than under the nitrogen-limited culture, ligninase activity was relatively lower. The lignin peroxidase appeared in nitrogen-limited culture and was suppressed by excess nitrogen. High level(40U/l) of lignin peroxidase activity was obtained in the growth medium containing 1.5mM veratryl alcohol, a secondary metabolite of P. chrysosporium. Lignin peroxidase production was not observed under conditions of nitrogen sufficiency or in balanced media, suggesting that control parameters could increase the activity by manipulating the secondary metabolism.

  • PDF

Effectiveness of Various Pseudomonas spp. and Burkholderia caryophylli Containing ACC-Deaminase for Improving Growth and Yield of Wheat (Triticum aestivum L.)

  • Shaharoona, B.;Jamro, G.M.;Zahir, Z.A.;Arshad, M.;Memon, K.S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1300-1307
    • /
    • 2007
  • This study assessed the possible role of different traits in selected plant growth-promoting rhizobacteria (PGPR) for improving wheat growth and yield under natural conditions. Rhizobacteria exhibiting 1-aminocyclopropane-1-carboxylate (ACC)-deaminase activity were isolated and screened for their growth-promoting activity in wheat under axenic conditions. Five isolates belonging to Pseudomonas and one Burkholderia caryophylli isolate that showed promising performances under axenic conditions were selected and characterized for in vitro ACC-deaminase activity, chitinase activity, auxin production, P solubilization, and root colonization. These isolates were then used as inocula for wheat cultivated under natural conditions in pot and/or field trials. Significant increases in root elongation, root weight, tillers per pot, 1,000-grain weight, and grain and straw yields were observed in response to inoculation with PGPR in the pot trials. Inoculation with these PGPR was also effective under field conditions and increased the wheat growth and yield significantly. However, the efficacy of the strains was inconsistent under the axenic, pot, and field conditions. Pseudomonas fluorescens ($ACC_{50}$), which exhibited a relatively high in vitro ACC-deaminase activity, chitinase activity, auxin production, and P solubilization and more intensive root colonization, was the most efficient isolate under the field conditions. Therefore, these results demonstrated that ACC-deaminase activity is an efficient parameter for the selection of promising PGPR under axenic conditions. However, additional traits of PGPR, including auxin production, chitinase activity, P solubilization, and root colonization, are also important for selecting PGPR as biofertilizers.

Antioxidant activity and anti-inflammatory activity of ethanol extract and fractions of Doenjang in LPS-stimulated RAW 264.7 macrophages

  • Kwak, Chung Shil;Son, Dahee;Chung, Young-Shin;Kwon, Young Hye
    • Nutrition Research and Practice
    • /
    • v.9 no.6
    • /
    • pp.569-578
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Fermentation can increase functional compounds in fermented soybean products, thereby improving antioxidant and/or anti-inflammatory activities. We investigated the changes in the contents of phenolics and isoflavones, antioxidant activity and anti-inflammatory activity of Doenjang during fermentation and aging. MATERIALS/METHODS: Doenjang was made by inoculating Aspergillus oryzae and Bacillus licheniformis in soybeans, fermenting and aging for 1, 3, 6, 8, and 12 months (D1, D3, D6, D8, and D12). Doenjang was extracted using ethanol, and sequentially fractioned by hexane, dichloromethane (DM), ethylacetate (EA), n-butanol, and water. The contents of total phenolics, flavonoids and isoflavones, 2,2-diphenyl-1 picryl hydrazyl (DPPH) radical scavenging activity, and ferric reducing antioxidant power (FRAP) were measured. Anti-inflammatory effects in terms of nitric oxide (NO), prostaglandin (PG) E2 and pro-inflammatory cytokine production and inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 expressions were also measured using LPS-treated RAW 264.7 macrophages. RESULTS: Total phenolic and flavonoid contents showed a gradual increase during fermentation and 6 months of aging and were sustained thereafter. DPPH radical scavenging activity and FRAP were increased by fermentation. FRAP was further increased by aging, but DPPH radical scavenging activity was not. Total isoflavone and glycoside contents decreased during fermentation and the aging process, while aglycone content and its proportion increased up to 3 or 6 months of aging and then showed a slow decrease. DM and EA fractions of Doenjang showed much higher total phenolic and flavonoid contents, and DPPH radical scavenging activity than the others. At $100{\mu}g/mL$, DM and EA fractions of D12 showed strongly suppressed NO production to 55.6% and 52.5% of control, respectively, and PGE2 production to 25.0% and 28.3% of control with inhibition of iNOS or COX-2 protein expression in macrophages. CONCLUSIONS: Twelve month-aged Doenjang has potent antioxidant and anti-inflammatory activities with high levels of phenolics and isoflavone aglycones, and can be used as a beneficial food for human health.

Screening and Evaluating of Wood-Rotting Fungi for Lignin Degradation and Ligninolytic Enzyme Production (III) - Conditions of Manganese Peroxidase Production by Lignin-Degrading Fungus LSK-27 - (리그닌분해(分解)와 리그닌분해효소(分解酵素) 생산(生産)을 위한 목재부후균(木材腐朽菌)의 선발(選拔)과 평가(評價) (III) -리그닌분해균(分解菌) LSK-27에 의한 Manganese peroxidase 생산조건(生産條件)-)

  • Jung, Hyun-Chae;Park, Seur-Kee;Kim, Byeong-Soo;Park, Chong-Yawl
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.53-61
    • /
    • 1999
  • Effects of culture conditions and Mn(II) addition were investigated for production of extracellular manganese peroxidase by lignin-degrading fungus LSK-27, Nitrogen source was shown to more influence the production of extracellular manganese peroxidase by LSK-27 than carbon source. When peptone or yeast extract as nitrogen source was added, high MnP activity was obtained. Especially, nitrogen-sufficient culture condition was effective in MnP activity, showing significantly increase up to 1.0% peptone concentration, but carbon-sufficient was not. Mn(II) was shown to strongly induce the MnP production in culture fluids of LSK-27. Increase of MnP actiyity was obeserved up to addition of 100ppm Mn(II), and over this Mn(II) concentration appeared to be inhibitory. The highest level of MnP activity was attained when Mn(II) was added after 2 day incubation.

  • PDF

Antibacterial Activity and Nitric Oxide Production Inhibitory Activity of the Extract and its Fractions from the Leaves of Prunus sargentii (산벚나무 잎 추출물 및 분획물의 항균활성과 Nitric Oxide 생성억제 활성)

  • Yang, Sun-A;Pyo, Byoung-Sik;Kim, Sun-Min;Lee, Kyoung-In
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.5
    • /
    • pp.308-314
    • /
    • 2012
  • This study was carried out to investigate the antibacterial activity against pathogens of acne and the anti-inflammatory effect of 75% ethanol extract and its fractions from the leaves of Prunus sargentii. In the antibacterial activity by the disc diffusion assay, the extract showed the highest effect against Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis in 5 mg/disc. However, the ethyl acetate fraction showed the highest antibacterial activity in 1 mg/disc. On the other hand, the hexane and chloroform fraction showed strong nitric oxide (NO) production inhibitory effect in lipopolysaccharide (LPS)-stimulated Raw 264.7 cell. In the cell viability of Raw 264.7 by MTT assay, the extract and all fractions were exhibited normal viabilities as nontoxic result. Consequently, the extract from the leaves of P. sargentii and its ethyl acetate fraction could be applicable to functional materials for antibacterial activity related fields. Moreover, the hexane and chloroform fraction could be applicable to candidate materials as anti-inflammatory agent.

Growth and Antioxidant Production of Bacillus polyfermenticus SCD in Whey Protein Concentrate (WPC)-based Medium (유청단백질농축물을 기본 배지로 한 Bacillus polyfermenticus SCD균의 생육과 항산화물질 생산)

  • Choi, Gooi-Hun;Lee, Jang-Hyun;Jo, Mi-Na;Yoon, Yo-Chang;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.28 no.1
    • /
    • pp.105-108
    • /
    • 2008
  • The cell growth and antioxidant activity of Bacillus polyfermenticus SCD were studied in tryptic soy broth (TSB) medium and whey protein concentrate (WPC)-based medium. Overall, higher lactose contents in WPC-35 medium (up to 2.0%), and longer culture times correlated with greater cell viability. In WPC-35 medium with 1.5% and 2.0% lactose, the cell growth of B. polyfermenticus SCD was similar to growth in TSB medium. The 1,1-diphenyl-2-picyrylhydrazyl (DPPH) radical scavenging activity of culture supernatant of B. polyfermenticus SCD in WPC-35 medium was measured to assess antioxidant activity. The antioxidant activity increased up to 32 hr of culture, reaching a maximum of 75.57% DPPH radical scavenging activity. The antioxidant activity seemed to follow the typical kinetics of primary metabolite synthesis. The antioxidant activity of B. polyfermenticus SCD supernatant in WPC-35 medium was more effective and stable than supernatant from TSB medium. These results suggest that WPC-35 medium is effective for the production of antioxidant by B. polyfermenticus SCD.

Comparative Study of Anti-inflammatory and Immunological Activities by Different Gender and Parts of Yeonsan Ogye (연산오계의 성별과 부위별 항염증 및 면역 활성 비교 연구)

  • Do, Young Min;Kim, Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.32 no.2
    • /
    • pp.99-105
    • /
    • 2018
  • The aim of this study is to compare the anti-inflammatory and immunological activity of different parts (bone, meat, and rind) of Yeonsan Ogye (YO). In order to evaluate cytotoxicity, MTT assay was performed. We investigated the production of nitric oxide (NO) and pro-inflammatory cytokines, such as IL-$1{\beta}$, IL-6, and TNF-${\alpha}$, in LPS-induced RAW264.7 cells. All parts of the YO showed no toxicity at concentrations of 1, 10, and $100{\mu}g/m{\ell}$. Rooster's bone, hen's bone, and rind decreased the production of NO. And rooster's bone, meat, and hen's bone also attenuated TNF-${\alpha}$ production in LPS-induced RAW 264.7 cells. In addition, all parts of the YO decreased IL-$1{\beta}$ and IL-6 production in LPS-induced RAW264.7 cells, whereas they all increased IL-$1{\beta}$, IL-6 and TNF-${\alpha}$ production in normal RAW264.7 cells. Rooster exhibited higher immune activation and inhibitory activity on inflammation than a hen, and among different parts of the YO, bone showed the highest activity. Our results demonstrated and compared the anti-inflammatory and immunological activity of different parts of the YO. These results suggest that YO may be developed as a raw material for new health supplement food and medicine to attenuate various symptoms related to inflammation and immunity.

Optimun Conditions for Production of Mycelia and Extracellular Polysaccharide from Inonotus obliquus and Their Immunomodulating Acitivities (차가버섯의 균사체 및 세포외다당체의 생산조건과 면역활성)

  • Park, Hee-Sung;Shin, Dong-Il;Chung, Il-Kyung;Yang, Byung-Keun
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1617-1622
    • /
    • 2009
  • Optium conditions for the production of mycelia and extracellular polysaccharide (EXPS) from submerged mycelial culture of Inonotus obliquus and their immunomodulating activities were investigated. The optmium production of mycelia and EXPS from I. obliquus was observed in mushroom complete medium (MCM). The optimum pH, temperature, and agitation speed for the production of mycelia and EXPS were 5.5, $25^{\circ}C$, and 150 rpm, respectively. The culture period for maximum production of mycelia (10.89 g/l) and EXPS (1.25 g/l) in shake flask cultivation was 11 days. The anticomplementary activity of intracellular polysaccharide (INPS) and EXPS form I. obliquus increased in a dose-dependent manner. Lysosomal enzyme activity of EXPS and INPS increased by 2.0- and 2.2-fold at $100{\mu}g/ml$ concentration, respectively, compared to the control group.

Inhibitory Effects on Oral Microbial Activity and Production of Lipopolysaccharides-Induced Pro-Inflammatory Mediators in Raw264.7 Macrophages of Ethanol Extract of Perilla flutescens (L.) Britton

  • Jeong, Moon-Jin;Lim, Do-Seon;Lee, Myoung-Hwa;Heo, Kyungwon;Kim, Han-Hong;Jeong, Soon-Jeong
    • Journal of dental hygiene science
    • /
    • v.20 no.4
    • /
    • pp.213-220
    • /
    • 2020
  • Background: The leaves of Perilla frutescens, commonly called perilla and used for food in Korea, contain components with a variety of biological effects and potential therapeutic applications. The purpose of this study was to identify the components of 70% ethanol extracted Perilla frutescens (EEPF) and determine its inhibitory effects on oral microbial activity and production of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharides (LPS)-stimulated Raw264.7 macrophages, consequently, to confirm the possibility of using EEPF as a functional component for improving the oral environment and preventing inflammation. Methods: One kg of P. frutescens leaves was extracted with 70% ethanol and dried at -70℃. EEPF was analyzed using high-performance liquid chromatography analysis, and antimicrobial activity against oral microorganisms was revealed using the disk diffusion test. Cell viability was elucidated using a methylthiazolydiphenyl-tetrazolium bromide assay, and the effect of EEPF on LPS-induced morphological variation was confirmed through microscopic observation. The effect of EEPF on LPS-induced production of pro-inflammatory mediators, NO and PGE2 was confirmed by the NO assay and PGE2 enzyme-linked immunosorbent assay. Results: The main component of EEPF was rosemarinic acid, and EEPF showed weak anti-bacterial and anti-fungal effects against microorganisms living in the oral cavity. EEPF did not show toxicity to Raw264.7 macrophages and had inhibitory effects on the morphological variations and production of pro-inflammatory mediators, NO and PGE2 in LPS-stimulated Raw264.7 macrophages. Conclusion: EEPF can be used as a functional material for improving the oral environment through the control of oral microorganisms and for modulating inflammation by inhibiting the production of inflammatory mediators.

Physiologic and epigenetic effects of nutrients on disease pathways

  • Soo-Hyun Park;Jaein Lee;Jin-Taek Hwang;Min-Yu Chung
    • Nutrition Research and Practice
    • /
    • v.17 no.1
    • /
    • pp.13-31
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Epigenetic regulation by nutrients can influence the development of specific diseases. This study sought to examine the effect of individual nutrients and nutrient families in the context of preventing chronic metabolic diseases via epigenetic regulation. The inhibition of lipid accumulation and inflammation by nutrients including proteins, lipids, vitamins, and minerals were observed, and histone acetylation by histone acetyltransferase (HAT) was measured. Correlative analyses were also performed. MATERIALS/METHODS: Nutrients were selected according to information from the Korean Ministry of Food and Drug Safety. Selected nutrient functionalities, including the attenuation of fatty acid-induced lipid accumulation and lipopolysaccharide-mediated acute inflammation were evaluated in mouse macrophage Raw264.7 and mouse hepatocyte AML-12 cells. Effects of the selected nutrients on in vitro HAT inhibition were also evaluated. RESULTS: Nitric oxide (NO) production correlated with HAT activity, which was regulated by the amino acids group, suggesting that amino acids potentially contribute to the attenuation of NO production via the inhibition of HAT activity. Unsaturated fatty acids tended to attenuate inflammation by inhibiting NO production, which may be attributable to the inhibition of in vitro HAT activity. In contrast to water-soluble vitamins, the lipid-soluble vitamins significantly decreased NO production. Water- and lipid-soluble vitamins both exhibited significant inhibitory activities against HAT. In addition, calcium and manganese significantly inhibited lipid accumulation, NO production, and HAT activity. CONCLUSIONS: Several candidate nutrients and their family members may have roles in the prevention of diseases, including hepatic steatosis and inflammation-related diseases (i.e., nonalcoholic steatohepatitis) via epigenetic regulation. Further studies are warranted to determine which specific amino acids, unsaturated fatty acids and lipid-soluble vitamins or specific minerals influence the development of steatosis and inflammatory-related diseases.