• Title/Summary/Keyword: product gas

Search Result 1,017, Processing Time 0.024 seconds

The Resistance Characteristics and Reliability Evaluation of an Insulation Ring Type of Corrugated Stainless Steel Tubing(CSST) (절연링형 금속플렉시블호스(CSST)의 저항 특성 및 신뢰성 평가)

  • Lee, Jang-Woo;Kim, Jeom-Sik;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.25-31
    • /
    • 2016
  • This paper has analyzed the structure, applicable regulations and the resistance characteristics of insulation ring type of CSST (Corrugated Stainless Steel Tubing for Gas). With the flammability test conducted in accordance with KS C IEC 60811-1-1, the evaluation of insulation resistance, temperature characteristics, and reliability has been conducted. An insulation ring type CSST consists of protective coating, tube, nut, insulation ring, packing, socket, and ball valve. Connecting an insulation ring type CSST to gas tubings for gas appliance is not permitted, moreover, the product shall be installed inside a sleeve pipe in case of buried installation such as the ceiling. Damages on protective coating and tube were detected when fire was applied to the test sample with a portable torch for 60 seconds. The insulation resistance of a normal product was $49.59M{\Omega}$, while that of the product completed the flammability test reduced to $9.21M{\Omega}$. The mean insulation resistance within the confidence Interval of 95% using the mini tap program 17 was $49.59M{\Omega}$ and the mean insulation resistance within the confidence interval reduced to $9.21M{\Omega}$. In the normal distribution analysis of 95% confidence interval, the value-P of the normal product was stable at 0.075 and AD(Anderson-Darling) statistic value was turned out to be 0.063, which is very normal, and the standard deviation was analyzed as 0.2586. The value P of the product completed the flammability test resulted in 0.005, the AD was 1.355 and the standard deviation reduced to 0.07908.

Recovery of BTEX-aromatics from Post-consumer Polypropylene Fraction by Pyrolysis Using a Fluidized Bed (유동층(流動層) 급속열분해(急速熱分解)에 의한 폐(廢) Polypropylene fraction으로부터 BTEX-aromatics의 회수(回收))

  • Cho, Min-Hwan;Jeong, Soo-Hwa;Kim, Joo-Sik
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.50-56
    • /
    • 2008
  • A polypropylene fraction collected from the stream of post-consumer plastics was pyrolyzed. The aim of this study is to observe the dependence of yield of BTEX-aromatics normally used as solvent on the reaction temperature. To reach the goal, three experiments were carried out at different temperature between 650 and $700^{\circ}C$, using a fluidized bed reactor that shows an excellent heat transfer. In the experiments, product gases were used as a fluidizing medium to maximize the amount of BTEX-aromatics at fixed flow rate and feed rate during the pyrolysis. Oil, gas and char were obtained as product fractions. Product gases were analyzed with GCs(TCD, FID) and with a GC-MS system for qualitative analysis. For an accurate analysis of product oil, the product oil was distilled under vacuum, and separated the distillation residues from oil fractions that were actually analyzed with a GC-MS system. As the reaction temperature went higher, the content of BTEX-aromatics increased. The maximal yield of BTEX-aromatics was obtained at $695^{\circ}C$ with a value of about 30%. The main compounds of product gas were $CH_4$, $C_2H_4$, $C_2H_6$, $C_3H_6$, $C_4H_{10}$ and the product gas had an higher heating value about 45MJ/kg. It could be used as a heat source for a pyrolysis plant or for other fuel applications.

Analysis of the Relationships among Energy, Economic Growth and Greenhouse Gas Emissions Using Metropolitan City/Province Level Data (광역시·도별 자료를 이용한 에너지, 경제성장, 온실가스 배출 간의 관계 분석)

  • Lee, Jaeseok;Lee, Keun-Dae;Yu, Bok-Keun
    • Environmental and Resource Economics Review
    • /
    • v.30 no.3
    • /
    • pp.503-533
    • /
    • 2021
  • This paper analyzes the relationships among the energy consumption, renewable energy production, real gross regional domestic product(GRDP), and greenhouse gas(GHG) emissions. It uses the metropolitan city and province level data for Korea from 2010 to 2018, employing a panal vector autoregressive(VAR) model. We find that an increase in energy consumption has a limited impact on boosting renewable energy production or gross regional domestic product, while it leads to an increase in greenhouse gas emissions. A rise in renewable energy production can increase gross regional domestic product, but it has no meaningful effects on energy consumption and the reduction of green house gas emissions. Our finding indicates that it is crucial to expand the supply of renewable energy as well as to decrease energy consumption in order to achieve the goal of reducing greenhouse gas emissions and reaching economic growth.

Determination of an Inelastic Collision Cross Sections for C3F8 Molecule by Electron Swarm Method (전자군 방법에 의한 C3F8분자가스의 비탄성충돌단면적의 결정)

  • Jeon Byung-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.301-306
    • /
    • 2006
  • The electron drift velocity W and the product of the longitudinal diffusion coefficient and the gas number density $ND_{L}$ in the $0.525\;\%$ and $5.05\;\%$ $C_{3}F_8-Ar$ mixtures were measured by using the double shutter drift tube with variable drift distance over the E/N range from 0.03 to 100 Td and gas pressure range from 1 to 915 torr. And we determined the electron collision cross sections set for the $C_{3}F_8$ molecule by STEP 1 of electron swarm method using a multi-term Boltzmann equation analysis. Our special attention in the present study was focused upon the vibrational excitation and new excitations cross sections of the $C_{3}F_8$ molecule.

Surface Micromachining of TEOS Sacrificial Layers by HF Gas Phase Etching (HF 기상식각에 의한 TEOS 희생층의 표면 미세가공)

  • 장원익;이창승;이종현;유형준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.725-730
    • /
    • 1996
  • The key process in silicon surface micromachining is the selective etching of a sacrificial layer to release the silicon microstructure. The newly developed anhydrous HF/$CH_3$OH gas phase etching of TEOS (teraethylorthosilicate) sacrificial layers onto the polysilicon and the nitride substrates was employed to release the polysilicon microstructures. A residual product after TEOS etching onto the nitride substrate was observed on the surface, since a SiOxNy layer is formed on the TEOS/nitride interface. The polysilicon microstructures are stuck to the underlying substrate because SiOxNy layer does not vaporize. We found that the only sacrificial etching without any residual product and stiction is TEOS etching onto the polysilicon substrate.

  • PDF

Durability Evaluation Method of Handling Structure using Hand Calculation and Simulation (수계산과 해석을 이용한 핸드링구 내구성 평가 방법 고찰)

  • Cho, Sung-Min;Bang, Hyo-Jung;Kang, Byung-Ik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • Most product structural components are assembled by various members and castings except casting products. In such cases, a particular structure is required to move and fix each component. In particular, the safety uncertainty of heavy product assemblies can be linked to large accidents. Thus, the safety design and evaluation of additional structures have become more important. In the field and factories, these additional structures are called handling structures, which are designed and manufactured. As the types of products produced become more diverse, the design and manufacture of a handling structure are also diversified. The results of each evaluation should be derived. We develop a logical design and evaluation method, which was previously designed based on empirical data, for the handling structure.

Development of a Monitoring and Control System in Gas Purification Process (가스 정제공정의 감시 제어시스템 연구)

  • 조택선;양종화
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.313-317
    • /
    • 1996
  • This work deals with description of gas purifing system to product high pure helium gas using low temperature absorption. The system controls temperature of heaters, open/close of solenoid valves and levels of liquid nitrogen to purify a raw gas and continuously products purified gas with perfoming alternatively purification and regeneration. We develop the monitoring and control program to monitor the gas purification process on real-time and control the process time with checking the impurities in purified gas. From the result of system operation, the developed monitoring and control system continuously products high pure helium gas with reducing impurities in raw gas to permitted limits(less than 0.01 ~ 0.05 ppm)

  • PDF

Membrane Process Development for $CO_2$ Separation of Flaring Gas (Flaring 가스의 $CO_2$ 분리를 위한 분리막 공정 기술개발)

  • Kim, Se Jong;Kim, Hack Eun;Cho, Won Jun;Ha, Seong Yong
    • Membrane Journal
    • /
    • v.23 no.5
    • /
    • pp.384-391
    • /
    • 2013
  • We prepared composite membrane which was made with polysulfone supported hollow fiber membrane coated with Hyflon AD to eliminate $CO_2$ gas from mixed-gases which were generated in DME manufacturing processes. The performance of module about simulated flaring gas was measured by using manufactured composite membrane. 1-stage evaluation result shows $CO_2$ concentration was below 3% at 1.2 MPa and at Stage cut 0.24 above. In addition $CO_2$ removal rate and $CH_4$ recovery rate was 80% respectively at the same condition. 2-stage evaluation result shows, when the $CO_2$ concentration of product gas was fixed at 5%, recycled $CO_2$ at stage cut 0.074 had the same concentration as the feed gas and the recovery rate of $CH_4$ was 99% at the moment.

Structural Integrity Evaluation by System Stress Analysis for Fuel Piping in a Process Plant (공정플랜트 연료배관의 시스템응력 해석에 의한 구조 건전성 평가)

  • Jeong, Seong Yong;Yoon, Kee Bong;Duyet, Pham Van;Yu, Jong Min;Kim, Ji Yoon
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.44-50
    • /
    • 2013
  • Process gas piping is one of the most basic components frequently used in the refinery and petrochemical plants. Many kinds of by-product gas have been used as fuel in the process plants. In some plants, natural gas is additionally introduced and mixed with the byproduct gas for upgrading the fuel. In this case, safety or design margin of the changed piping system of the plant should be re-evaluated based on a proper design code such as ASME or API codes since internal pressure, temperature and gas compositions are different from the original plant design conditions. In this study, series of piping stress analysis were conducted for a process piping used for transporting the mixed gas of the by-product gas and the natural gas from a mixing drum to a knock-out drum in a refinery plant. The analysed piping section had been actually installed in a domestic industry and needed safety audit since the design condition was changed. Pipe locations of the maximum system stress and displacement were determined, which can be candidate inspection and safety monitoring points during the upcoming operation period. For studying the effects of outside air temperature to safety the additional stress analysis were conducted for various temperatures in $0{\sim}30^{\circ}C$. Effects of the friction coefficient between the pipe and support were also investigated showing a proper choice if the friction coefficient is important. The maximum system stresses were occurred mainly at elbow, tee and support locations, which shows the thermal load contributes considerably to the system stress rather than the internal pressure or the gravity loads.