• Title/Summary/Keyword: product gas

Search Result 1,017, Processing Time 0.025 seconds

Development of a Type 4 Composite Cylinder for Self-contained Breathing Apparatus (공기호흡기용 타입 4 복합재료 용기 개발)

  • Cho, Sung-min;Kim, Da-eun;Seong, Hye-jin;Ko, Young-kyu;Kim, Hong-chul;Lee, Kang-ok;Jo, Min-sik;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.1-6
    • /
    • 2019
  • Aluminum liners used in cylinders are hazardous for human health. In this study, we use a plastic PA liner inside cylinders to solve this problem. Plastic PA liners are widely used in the manufacturing industry in the production of food and beverage containers. We covered the aluminum boss with a plastic liner material and wound the composite fibers over the liner material. To reinforce the dome area, we used low strength / high elongation plastic liner. To predict the performance of the developed product, we conducted structural analyses utilizing the 3D laminated solid element. We verified the soundness of the product by testing the prototype.

Synthesis of Methane-rich Gases(Alternative Energy) by Thermochemical Gasification from Waste Municipal and Lignocellulosic Materials (목질 폐재와 가정용 쓰레기의 열-화학적 분해에 의한 고수율 메탄가스(대체연료)의 합성)

  • Lee, Byung-Guen;Lee, Sun-Haing
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.13-19
    • /
    • 1989
  • Two different quartz types of gasification reactor were used for pyrolysis and gasification of sawdust, ricestraw, ricehusk and municipal wastes which contain only cellulosics., operating at 1 atmospheric and vacuum pressure respectively. Also a stainless steel autoclave gasification reactor was used which is possible to use up to 100 atmospheric pressures and $800^{\circ}C$ of reaction temperature to complete pyrolysis and gasification reaction. The catalysts used in this reaction w- ere $K_2CO_3$, $Na_2CO_3$, Ni and Ni-$K_2CO_3$ as CO-Catalyst. The product gas mixtures were identified to be CO, $CO_2$, $C_3H_3$, $CH_4$ and $CH_3CHO$ etc. by Gas Chromatography and Mass Spectrometry. The pressurized gasification reaction shows significant increase in terms of methane composition and yield of product gases, comparing with those from unpressurized gasification reactions. The total volume of product gas mixtures amounts to 1600-1800ml per1gof waste of waste lignocellulosics or municipal waste, and the metane content of the gas mixtures reached to 40%, when $800^{\circ}C$ of reaction temperature and 100 atmospheric pressures with Ni-$K_2CO_3$ as CO-catalyst in the pressurized gasification reaction were used. This results show that the product gas mixtures containing 40% of methane call be used for alternative enegy source.

  • PDF

Case Studies of Energy-Saving Method for Renewable Energy Installation in Sewage Treatment plant (하수처리장 신재생에너지 설치 사례 연구를 통한 에너지 절감 방안)

  • Yoon, Jong-Won;Kim, Chu-Young;Choi, Chang-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.4
    • /
    • pp.42-48
    • /
    • 2014
  • Sewage treatment facilities can purify sewage enough to be send to river or sea water, that discharged from human life and industrial activities. In the sewage treatment process, we can get large amount of by-product energy resources and materials such as heat of sewage, digester gas and purified water etc., it can be utilized by applying various technologies thereby we can reduce energy consumption in the process. In this paper, it was analyzed using the data collected from the operational case study for the energy savings effect that can be obtained when using the digester gas, one of the by-product materials of sewage treatment process, for electric power generation. Cost of 623million won is an annual reduction of 4,032MWh corresponding 9% of the annual electricity consumption of the sewage treatment plant, such an alternative power generation using digester gas was proposed in this paper has been verified the feasibility of the proposed reduction of energy.

Characteristics of $SF_6$ Gas Recycling Processes ($SF_6$가스 회수 공정들의 특성 연구)

  • Cho, Hoon;Woo, Dae-Sik;Choi, Yu-Mi;Han, Myung-Wan
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.329-335
    • /
    • 2011
  • $SF_6$ gas is well known as a global warming gas. Global warming potential of $SF_6$ gas is 22,000 times higher than that of $CO_2$. Recycling of $SF_6$ gas is an essential technology for the sake of the environment and the economy. The recovery processes of $SF_6$ gas studied in this work were liquefaction, distillation, and crystallization processes because these processes were thought to be easily carried to the fields for recycling waste $SF_6$ gas. The processes were simulated and optimized using Aspen plus. The optimization problems were formulated to minimize energy consumption with satisfying product specification and desired recovery. The performance of the processes was compared based on the optimization results. Effects of major process variables on the recovery performance were investigated and optimal operation guide for changing product specification and product recovery was provided.

An empirical study on the effect of choice factors of gas station on repurchase intention (소비자의 주유소 선택요인이 재구매의도에 미치는 영향에 관한 실증적 연구)

  • Lee, Seon-Gyu;Lee, Ung-Hui
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.191-204
    • /
    • 2007
  • This research investigates the present situation of petroleum market and the potential strategy which help gas stat ion obtain compel it ive advantages. Specifically, this research chooses five factors (product quality, service, price, multi-function, easy entrance) which are believed to be extensively related to repurchasing intent ion. The findings are as follows ; First, four factors associated wi th gas stat ion choice (product quality, service, price, multi-function) are related to repurchase intent ion except easy entrance. Second, sex and age have moderating effects between factors and repurchase intention. To keep and preoccupy new customers, the administrators of petroleum industry and gas station should establish sales/administration strategies considering these above.

  • PDF

An Empirical Study on the Effect of Choice Factors of Gas Station on Repurchase Intention (소비자의 주유소 재방문의도에 영향을 미치는 요인에 관한 실증적 연구)

  • Lee, Sun-Kyu;Lee, Ung-Hee;Kim, Young-Hyung
    • Journal of Digital Convergence
    • /
    • v.7 no.3
    • /
    • pp.83-92
    • /
    • 2009
  • This research investigates the present situation of petroleum market and the potential strategy which help gas station obtain competitive advantages. Specifically, this research chooses five factors (product quality, service, price, multi-function, easy entrance) which are believed to be extensively related to repurchasing intention. The findings are as follows; First, four factors associated with gas station choice (product quality, service, price, multi-function) are related to repurchase intention except easy entrance. Second, sex and age have moderating effects between factors and repurchase intention. To keep and preoccupy new customers, the administrators of petroleum industry and gas station should establish sales/administration strategies considering these above.

  • PDF

Development of Type 4 Composite Pressure Vessel by using PET Liner for Self-contained Breathing Apparatus (PET 라이너를 적용한 공기호흡기용 타입 복합재료 4 압력용기 개발)

  • Cho, Sung-Min;Lee, Seung-kuk;Cho, Min-sik;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.164-169
    • /
    • 2018
  • In this study, we solved the human hazard problem of aluminum liner by applying plastic PET liner which is widely used as a material for food and beverage containers in the market. In order to reinforce dome area by using low strength / high elongation plastic liner, The aluminum boss was covered on the plastic liner surface. In order to predict the performance of the developed product, the structural analysis was carried out by applying the three - dimensional laminated solid element, and the soundness of the product was verified through the prototype performance test.

Removal potential of dissolved gas in gas hydrate desalination process by reverse osmosis (역삼투막을 이용한 가스하이드레이트 해수담수화 공정 내 용존 가스의 제거 가능성 평가)

  • Ryu, Hyunwook;Kim, Minseok;Lim, Jun-Heok;Kim, Joung Ha;Lee, Ju Dong;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.635-643
    • /
    • 2016
  • Gas hydrate (GH)-based desalination process have a potential as a novel unit desalination process. GHs are nonstoichiometric crystalline inclusion compounds formed at low temperature and a high pressure condition by water and a number of guest gas molecules. After formation, pure GHs are separated from the remaining concentrated seawater and they are dissociated into guest gas and pure water in a low temperature and a high pressure condition. The condition of GH formation is different depending on the type of guest gas. This is the reason why the guest gas is a key to success of GH desalination process. The salt rejection of GH based desalination process appeared 60.5-93%, post treatment process is needed to finally meet the product water quality. This study adopted reverse osmosis (RO) as a post treatment. However, the test about gas rejection by RO process have to be performed because the guest gas will be dissolved in a GH product (RO feed). In this research, removal potential of dissolved gas by RO process is performed using lab-scale RO system and GC/MS analysis. The relation between RO membrane characteristics and gas removal rate were analyzed based on the GC/MS measurement.

Development of PSA Process for Medical Oxygen Generator (의료용 산소발생기 제작을 위한 PSA 공정의 개발)

  • Choi, Jae-Wook;Na, Byung-Ki
    • Clean Technology
    • /
    • v.15 no.2
    • /
    • pp.75-80
    • /
    • 2009
  • In order to separate oxygen from air, the effects of feed gas flow rate and rinse gas flow rate on the product purity and flow were examined using 2 bed PSA with 4 step cycle. The addition of product pressurization step increased the product purity and flow rate. The addition of pressure equalization increased the product flow rate. The test product was manufactured and the purity and flow rate of product oxygen was examined. The results were compared with the commercial medical oxygen generator of 5 ${\ell}/min$ and 90% oxygen purity.

Light Tar Decomposition of Product Pyrolysis Gas from Sewage Sludge in a Gliding Arc Plasma Reformer

  • Lim, Mun-Sup;Chun, Young-Nam
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.89-94
    • /
    • 2012
  • Pyrolysis/gasification technology utilizes an energy conversion technique from various waste resources, such as biomass, solid waste, sewage sludge, and etc. to generating a syngas (synthesis gas). However, one of the major problems for the pyrolysis gasification is the presence of tar in the product gas. The tar produced might cause damages and operating problems on the facility. In this study, a gliding arc plasma reformer was developed to solve the previously acknowledged issues. An experiment was conducted using surrogate benzene and naphthalene, which are generated during the pyrolysis and/or gasification, as the representative tar substance. To identify the characteristics of the influential parameters of tar decomposition, tests were performed on the steam feed amount (steam/carbon ratio), input discharge power (specific energy input, SEI), total feed gas amount and the input tar concentration. In benzene, the optimal operating conditions of the gliding arc plasma 2 in steam to carbon (S/C) ratio, 0.98 $kWh/m^3$ in SEI, 14 L/min in total gas feed rate and 3.6% in benzene concentration. In naphthalene, 2.5 in S/C ratio, 1 $kWh/m^3$ in SEI, 18.4 L/min in total gas feed rate and 1% in naphthalene concentration. The benzene decomposition efficiency was 95%, and the energy efficiency was 120 g/kWh. The naphthalene decomposition efficiency was 79%, and the energy yield was 68 g/kWh.