• Title/Summary/Keyword: product gas

Search Result 1,017, Processing Time 0.025 seconds

Characteristics of Solid Electrolyte $CO_2$ Gas Sensors (고체전해질을 사용한 $CO_2$가스센서의 응답기구)

  • Kim, G.Y.;Park, Y.P.;Lee, S.I.;Lee, W.J.;Hong, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.562-564
    • /
    • 2002
  • In recent years, environments of our globe has been getting worse as a result of rapid growth of socioeconomic activities. The global environmental issues of acid rain, green house effect and ozone depletion are caused by various chemical pollutants, emitted from industries, automobiles and home. Most of these pollutants are produced by combustion processes. CO2 as a chief criminal of the greenhouse effect is a main combustion product of fossil fuels. Development of solid-state electrochemical devices for detecting CO2 is demonstrated based on various combination of solid electrolytes and auxiliary sensing materials. The object of this research is to develop various sensor performance for solid electrolyte gas sensor, and to test gas sensor performance manufactured. So we try to present a guidance for developing potential type gas sensor. We concentrated on development of manufacturing process and performance test.

  • PDF

Radiation Heat Flux and Combustion Characteristics of Inverse Diffusion Flame Burner Using Synthesis Gas, Part 1 : Air-Fuel Combustion (합성가스를 이용한 역확산버너의 연소 및 복사열전달 특성, Part 1 : 공기-연료 연소)

  • Lee, Pil-Hyong;Park, Chang-Soo;Lee, Jae-Young;Park, Bong-Il;Hwang, Sang-Soon;Lee, Sung-Ho;Anh, Yong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.4
    • /
    • pp.33-40
    • /
    • 2009
  • Waste Thermal Pyrolysis Melting process was proposed and has been studied in order to prevent air pollution by dioxin and fly ash generated from combustion process for disposal of waste. In this study, applicability as the fuel of diffusion burner of synthesis gas formed from Waste Thermal Pyrolysis process was addressed. Results showed that there is no big difference in the flame shape between MNDF and SNDF, and lift off was detected in MIDF but flame is more stable in SIDF which contains hydrogen with high combustion velocity as flow rate in first nozzle is increased. And radiation heat flux in inverse diffusion flame of synthesis gas was found to be more by 1.5 times than that in inverse diffusion flame of methane because of higher mole fraction of $CO_2$ with high emissivity in product gas.

  • PDF

Evaluation of Specific Impulse for Liquid Rocket Engine Adopting Gas Generator Cycle (가스발생기 사이클 액체로켓엔진의 비추력 평가)

  • Cho, Won-Kook;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.93-97
    • /
    • 2010
  • The analysis of specific impulse of the liquid rocket engine employing gas generator cycle with LOx/kerosene as propellant has been performed. The relative error of performance of 300 ton level engine is 0.1%s for specific impulse and 12% for optimal combustion pressure comparing with the published data. The difference of the performance model and the material property models of gas generator product gas are the presumed major reason of discrepancy. The optimal condition of 30 ton level engine is combustion pressure of 68 bar and mixture ratio of 2.2 for maximum specific impulse. This optimal condition can be changed by performance models.

Computer Simulation of Methanation Reactor with Monolith Catalyst (전산 모델링을 통한 모노리스 촉매형 메탄화 반응기의 성능 특성 연구)

  • Chi, Junhwa;Kim, Sungchul;Hong, Jinpyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.425-435
    • /
    • 2014
  • Simulation studies on catalytic methanation reaction in externally cooled tubular reactor filled with monolithic catalysts were carried out using a general purpose modelling tool $gPROMS^{(R)}$. We investigated the effects of operating parameters such as gas space velocity, temperature and pressure of feeding gas on temperature distribution inside the reactor, overall CO conversion, and chemical composition of product gas. In general, performance of methanation reaction is favored under low temperature and high pressure for a wide range of their values. However, methane production becomes negligible at temperatures below 573K when the reactor temperature is not high enough to ignite methanation reaction. Capacity enhancement of the reactor by increasing gas space velocity and/or gas inlet pressure resulted no significant reduction in reactor performance and heat transfer property of catalyst.

Visualization method of Clearance Design of Gas Turbine using Commercial Finite Element Analysis program (상용 유한요소 해석 프로그램을 이용한 가스터빈 간극 설계의 가시화 방법)

  • Han, Do Won;Kim, Yeong Chun;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.1
    • /
    • pp.78-84
    • /
    • 2019
  • A gas turbine is the main equipment of a power plant that generates electricity by high-speed rotation of the rotor in a high-temperature environment. In particular, in the case of medium to large-sized gas turbines, the rotor is composed of a plurality of stages, and each component is exposed to different physical environments. Especially, in the case of the tip clearance of the turbine, it is a very important factor in the performance of the design items and the operation of the stable turbine, and a design considering the physical behavior of all major parts should be done. In this study, we will discuss the process of visualizing the physical behavior of turbine operating conditions and the method of designing tip clearance for stable operation by using commercial finite element analysis program for gas turbine assembly model and single product.

Flow Analysis of the Air Pocket in Draw Die (드로우 금형의 에어포켓 유출 유동해석)

  • Hwang, Se-Joon;Park, Warn-Gyu;Kim, Chul;Oh, Se-Wook;Cho, Nam-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.345-348
    • /
    • 2006
  • In sheet metal forming process using press and draw die some defect can be made because of the high pressure of air pocket between draw die and the product. The purpose of this study is to develop a program to decide an optimal combination of air vent hole size and number to prevent those defect on product. The air inside air pocket is considered as ideal gas and the compression and expansion is assumed as isentropic process. The mass flow is computed in two flow condition: unchocked and chocked condition. The present computation obtains required cross-sectional area of air vent hole for not exceeding the user specified pressure such as the pressure for yielding strength of the product or the pressure for unchocked flow. To validate the program the present results are compared with the results of other researchers and commercial CFD code.

  • PDF

Synthesis of Perfluoroalkyl Alcohol, 3-(Perfluorooctyl)propan-2-ol, Using Two-Step Alcoholization

  • Nguyen, Trung Hieu;Tae, Beom-Seok;Park, Jun-Seo;Lee, Kwang-Nam
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.5
    • /
    • pp.603-608
    • /
    • 2012
  • 3-(Perfluorooctyl)propan-2-ol was synthesized using an alcoholization process. The synthesis consisted of two steps: (1) addition of the olefin propylene to perfluorooctyl iodide to yield the corresponding iodo-adduct perfluorooctyl propyl iodide and (2) hydrolysis of the adduct reacted with water and dimethylformamide to yield the final product. The adduct and product were analyzed using gas chromatography to determine the yield and purity. The optimal conditions for each step of the process were determined, and a 93% yield of adduct and 95% yield of final product was achieved.

Studies on Preparation and Quality of Kimchi-Bread (김치식빵의 제조와 품질에 관한 연구)

  • 박인경;김미경;김순동
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.10 no.3
    • /
    • pp.229-238
    • /
    • 2000
  • This study was conducted to investigate the effect of homogenized kimchi product (HKP) on dough characteristics and quality of bread. Fermented homogenized Chinese cabbage kimchi product was added 0.10, 20 and 30% to wheat flour. The pH of dough decreased with an increase in the amounts of HKP, which showed at PH 4.9 for the dough added 30% HKP. Fermentation time of the dough was reduced as much as 9~23 minutes as compared with the control products. Loaf volume index of the bread prepared by adding 10 ~30% HKP increased also by 12.7 ~ 19.0%. Hardness, cohesiveness, springiness and gumminess of the bread added with 30% HKP were lower than those of the control. The gas forming cell of the bread added with 30% HKP were good and regular. Crust and internal color of the bread with more HKP had tendency to redness. Sensory quality of the kimchi-bread estimated by shape, flavor and overall quality was better than that of control product, especially the kimchi-bread qualify at addition of 30% HKP was best.

  • PDF

Determination of Residual Pesticides in Recycle Product of Waste Plastic Pyrolysis (폐비닐 열분해 재활용품 중의 잔류농약 분석)

  • Shin Hea Soon;Shim Sung Hoon
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.3
    • /
    • pp.315-320
    • /
    • 2004
  • Environmental waste treatment technology is transforming from incineration system to pyrolysis gasification system. And there it is necessary for our country to adapt gasification system urgently to prevent the land pollution and lack of landfill area. The objective of this study was to determine the pesticides residues of derived product of pyrolysis gasification system for recycling of waste plastic by gas chromatograph-mass selective detector and nitrogen phosphorus detector. The residual pesticides were not detected in derived product of waste recyling. But some pesticide was detected on raw level (0.02 ~ 0.05 ppm) in waste plastic sample.

Effects of Oxidizer Inlet Velocity on NO Emission characteristics of 0.2MW Oxy-Fuel Combustor (산화제 입구 속도에 따른 0.2MW 순산소 연소기의 NO 배출 특성)

  • Kim, Ho-Keun;Lee, Sang-Min;Ahn, Kook-Young;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.63-68
    • /
    • 2006
  • Effects of oxidizer inlet velocity on NO emission characteristics of 0.2MW oxy-fuel combustor have been experimentally investigated. The NO formation process in the oxy-fuel combustion is extremely sensitive even for the small fraction of nitrogen in oxidizer. By increasing the oxidizer velocity, flame length is reduced due to the enhanced turbulent mixing. The increased oxidizer velocity also results in the decreased flame temperature through the elevated entrainment rate of the recirculated product and the corresponding NO emission is drastically decreased. Experimental results clearly indicate that the entrained product gases play a crucial role to decrease the temperature at the flame zone and the post flame zone where the thermal NO is mainly formed.

  • PDF