• Title/Summary/Keyword: procyanidin structure

Search Result 10, Processing Time 0.026 seconds

Structure Determination of Glucosyltransferase Inhibitors from Cacao Bean Husk (Cacao Bean Husk로부터 Glucosyltransferase 저해물질 구조결정)

  • An, Bong-Jeun;Choi, Cheong
    • Applied Biological Chemistry
    • /
    • v.37 no.6
    • /
    • pp.498-502
    • /
    • 1994
  • For glucosyltransferase(GTase) inhibitors, two flavan-3-ols were isolated from Theobroma cacao beam husk. They showed positive reaction with $anisaldehyde-H_2SO_4$ solution, $FeCl_3$ to be confirmed as dimeric flavan-3-ols on TLC and were identified as procyanidin B-1 [(-)-epicatechin-$(4{\beta}{\rightarrow}8)$-catechin] and procyanidin B-3 [(+)-catechin-$(4{\beta}{\rightarrow}8)$-catechin by spectroscopic analysis. Their inhibitory effect on glucosyltranaferase activity was also investigated and procyanidin B-1 showed 50% inhibition at 0.3 mM. They inhibited on the glucosyltransferasa noncompetitively and dimeric flavan-3-ol containing (-)-epicatechin had higer inhibitory activity.

  • PDF

Structure and Isolation of Xanthine Oxidase Inhibitor from Oolong Tea (우롱차로부터 Xanthine Oxidase 저해물질 분리 및 구조)

  • An, Bong-Jeun;Kim, Won-Keuk;Choi, Jang-Youn;Kwon, Ik-Boo;Choi, Cheong
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.558-562
    • /
    • 1992
  • Xanthine oxidase involved in pruine metabolism oxidizes hypoxanthine to xanthine and xanthine to uric acid. The derangement of pruine metabolism results in gout that associates painful deposit of monosodium urate in the cartilage of joints. In the continuous study for natural compound, six flavan-3-ols have been isolated from the leaves of Oolong tea. The structures of procyanidin B-1, B-3, procyanidin B-3-3-O-rhamnose, procyanidin B-1-3-O-gallate, (-)-epicatechin, (-)-epicatechin-3-O-gallate were established by NMR and their inhibitory effect on xanthine oxidase activity was investigated. Flavan-3-ols containing the gallate had a high inhibitory capacity. Procyanidin B-1-3-O-gallate showed complete inhibition at $50\;{\mu}M$ and inhibited on the xanthine oxidase competitively.

  • PDF

The chemical structure of polyphenols isolated from cacao bean and their inhibitory effect on ACE (Cacao bean으로부터 분리된 polyphenol 성분의 화학구조분석과 ACE 저해효과)

  • Chang, Young-Youl;Yim, Moo-Hyun;Lee, Man-Chong
    • Applied Biological Chemistry
    • /
    • v.41 no.1
    • /
    • pp.110-117
    • /
    • 1998
  • Seven kinds of polyphenol compounds having ACE activities were isolated and purified by Sephadex LH-20, MCI-gel CHP-20, ${\um}-Bondapak\;C_{18}$ and Fuji-gel ODS $G_3$ sucessively from cacao bean(Ghana). The chemical structures of each compound were determined and identified using analyzers such as $^1H-NMR$, $^{13}C-NMR$, IR, MS, polarimeter and Elemental Analysis. Inhibition effects of isolated polyphenols on angiotensin converting enzyme (concerned with hypertension) were also observed. The results obtained were as follows,; The compounds isolated and identified were confirmed and determined as compound 1 [(+)-catechin], compound 2 [(-)-epicatechin], compound 3 [procyanidin B-1 : (-)-epicatechin-$(4{\beta}{\rightarrow}8)$-(+)catechin], compound 4 [procyanidin B-2 : (-)-epicatechin-$(4{\beta}{\rightarrow}8)$-(-)-epicatechin], compound 5 [procyanidin B-7 : (-)-epicatechin-$(4{\beta}{\rightarrow}6)$-(+)-catechin], campound 6 (procyanidin B-2,3,3'-O -digallate), compound 7 [cinnamtannin A-2 : (-)-epicatechin-$(4{\beta}{\rightarrow}8)$-(-)-epicatechin-$(4{\beta}{\rightarrow}8)$-(-)-epicatechin-$(4{\beta}{\rightarrow}8)$-(-)-epicatechin]. In the inhibition effect on ACE, procyanidin B-2,3,3'-O-digallate (compound 6) showed a higher value of 94.6% for ACE in $100\;{\um}M$ than other compounds such as (+)-catechin (compound 1), (-)-epicatechin (compound 2), procyanidin B-1 (compound 3), procyanidin B-2 (compound 4), procyanidin B-7 (compound 5) and cinnamtannin A-2 (compound 7) showing 67.9%, 61.9%, 88.6%, 82.5%, 72.2% and 82.3% for ACE, respectively. Inhibition of $4{\beta}{\rightarrow}8$ in coupling bond on the ACE enzyme was more effective than that of $4{\beta}{\rightarrow}6$. Procyanidin containing gallate inhibited more effectively than those containing not any. It was also observed that a lot of hydroxy group in the compounds increased the inhibitory effect.

  • PDF

Purification and Structure Determination of the GTase Inhibitor from Cacao Bean Husk Extract (Cacao Bean Husk 추출물로부터 Glucosyltransferase 저해 활성 물질의 분리 및 구조 동정)

  • 권익부;안봉전이신영
    • KSBB Journal
    • /
    • v.11 no.5
    • /
    • pp.536-542
    • /
    • 1996
  • The isolation of active compounds showing the inhibitory effect on glucosyltransferase(GTase) from cacao bean husk(CBH) extract was carried out for screening of anti-plaque agents. These active compounds were purified by additional column chromatography of MCI-gel CHP-20 and Sephadex LH-20 and their chemical structures were determined by NMR and mass spectroscopy. Two compounds showing the inhibitory effect on GTase from CBH extract were obtained. These compounds showed positive reactions with anisaldehyde-H2SO4 solution and FeCl3, and were identified as dimeric flavan-3-ols on TLC. By NMR and MS data analyses, the structures of two different flavan-3-ols were identified as procyanidin B-1 and procyanidin B-3, respectively.

  • PDF

Structure Determination of Anti-plaque Agents for Prevention of Dental Caries from Cccao Bean Husk (Cacao Bean Husk로부터 분리한 충치 예방물질의 구조 결정)

  • 권익부;안봉전유주현이신영
    • KSBB Journal
    • /
    • v.8 no.1
    • /
    • pp.69-74
    • /
    • 1993
  • For an anti-plaque agent, two flavan-3-ols isolated from Theobroma cacao bean husk showed positive reactions with $H_2SO_4$-anisaldehyde solution, $FeCl_3$, and were identified as monomeric, dimeric flavan-3-ots in TLC. They were (-)-epicatechin and procyanidin B-2(epicatechin-(4$\beta$$\rightarrow$8)-epicatechin). The structures were established by spectroscopic and chemical methods. (-)-Epicatechin had moderate inhibitory activity on GTase at concentration of 1.0mM while procyanidin B-2 showed complete inhibition activity at the same concentration. The hydroxyl group of flavan-3-ol was supposed to be the essential element for inhibition on GTase.

  • PDF

Chemical Structure and Isolation of Novel Glucosyltransferase Inhibitor from Artocarpus heterophyllus folium (Jack Fruit 잎으로부터 새로운 Glucosyltransferase 저해물질 분리 및 화학구조)

  • An, Bong-Jeun
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1304-1308
    • /
    • 1997
  • In the course of studies for anti-plaque agents, novel procyanidin structure isolated from Artocarpus heterophyllus folium was established by thiolysis and spectroscopic analysis. The chemical structure was identified for $(-)-epiafzelecin-(4{\beta}{\rightarrow}8)-afzelecin-(4{\alpha}-8)-catechin$ containing the trimeric flavan-3-ols and molecular weight was 833[M-H] by FAB-MS negative ion method. The inhibitory effect on the glucosyltransferase activity was investigated, novel compound showed complete inhibition at 1.0 mM and inhibited on the glucosyltransferase noncompetitively.

  • PDF

Identification of Biologically Effect and Chemical Structure of Polyphenol Compounds from the Leaves of Korea Persimmon (Diospyrus kaki L. Folium) (한국산 감잎의 Polyphenol 화합물의 생리활성물질의 화학구조 및 효소저해효과)

  • An, Bong-Jeon;Choi, Hee-Jin;Son, Jun-Ho;Woo, Hee-Seob;Han, Ho-Suk;Park, Jung-Hye;Son, Gyu-Mok;Choi, Cheong
    • Journal of the Korean Society of Food Culture
    • /
    • v.18 no.5
    • /
    • pp.443-456
    • /
    • 2003
  • The lyophilization of the solution extracted from 60 percent of acetone applied to persimmon leaves, the compounding process in accordance with the solution's concentration, and the gel filteration through Sephadex G-50 of biologically activated substances obstructing enzyme activity, such as tyrosinase, xanthine oxidase, and angiotesin converting enzyme (ACE) led to the assumption that polyphenol was the compound serving as biologically activated substances obstructing enzyme activity. Xanthine oxidase involved in pruine metabolism oxidizes hypoxanthine to xanthine and xanthine to uric acid. In the continuous study for natural compound, nine flavan-3-ols have been isolated from the persimmon leaves. The structures of (+)-catechin, (+)-gallocatechin, procyanidin B-1, pyrocyanidin C-1, prodelphinidin B-3, gallocatechin-$(4{\alpha}{\rightarrow}8)$-catechin, procyanidin B-7-3-O-gallate, procyanidin C-1-3'-3'-3'-O-trigallate and (-)-epigallocatechin-$(4{\alpha}{\rightarrow}8)$-epigallocatechin-$(4{\alpha}{\rightarrow}8)$-catechin were established by NMR and their inhibitory effect on xanthine oxidase activity was investigated. Procyanidin B-7-3-O-gallate, (-)-epigallocatechin-$(4{\alpha}{\rightarrow}8)$-epigallocatechin-$(4{\alpha}{\rightarrow}8)$-catechin and procyanidin C-1-3'-3'-3'-O-trigallate showed 94%, 90.69%, 80.90% inhibition at $100\;({\mu})M$ and inhibited on the angiotensin converting enzyme respectively. Procyanidin B-7-3-O-gallate and procyanidin C-1-3'-3'-3'-O-trigallate showed 66%, 63% inhibition at $100\;({\mu})M$ and inhibited on the xanthine oxidase competitively. Procyanidin C-1-3'-3'-3'-O-trigallate showed 70% inhibition at $100\;({\mu})M$ and inhibited on the tyrosinase competitively.

Isolation and Structure Elucidation of Proanthocyanidin in Bark of Pinus densiflora (소나무수피 프로안토시아니딘(Proanthocyanidin)의 분리 및 구조분석)

  • Song, Hong-Keun;Oh, Sung-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.81-93
    • /
    • 1996
  • To elucidate the structure of procyanidin in Korean red pine (Pinus densiflora S. et Z.), bark, the extractives were extracted with acetone-water mixture(7:3, v/v) from inner bark of Korean red pine. The extracts separated three fractions which were extracted by liquid-liquid extraction. The extracting solvents were chloroform and ethyl acetate and water. The part of ethylacetate soluble was chromatographed by liquid chromatography. The ethylacetate soluble portion yielded four natural procyanidin dimers, two known epicatechin-($4{\beta}{\rightarrow}6$)-catechin, catechin-($4{\alpha}{\rightarrow}8$)-catechin and two unknown catechin-($4{\beta}{\rightarrow}6$)-catechin and conformational isomer of epicatechin-($4{\alpha}{\rightarrow}6$)-catechin. The additional catechins was also isolated. The structures of these procyanidins were elucidated by their $^{13}C$-NMR spectra.

  • PDF

Chemical Structure of Polyphenol Isolated from Korean Pear (Pyrus pyrifolia Nakai) (한국산 배 (Pyrus pyrifolia Nakai)로부터 polyphenol 화합물의 구조결정)

  • Zhang, Yun-Bin;Choi, Hee-Jin;Han, Ho-Suk;Park, Jung-Hye;Son, Jun-Ho;Bae, Jong-Ho;Seung, Tae-Su;An, Bong-Jeun;Kim, Hyun-Gu;Choi, Cheong
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.959-967
    • /
    • 2003
  • The polyphenol compounds of Korean pears were extracted with 60% acetone for 4 days at room temperature and purified using Sephadex LH-20 column chromatography, MCI gel column chromatography, Bondapak $C_{18}$ column chromatography, TLC, and HPLC. As a result, three compounds were isolated. The chemical structures of each compound were determined and identified using NMR, FAM-mass, and FT-IR. The compounds were confirmed as (+)-catechin (compound A), (+)-gallocatechin (compound B), (-)-epigallocatechin (compound C), and procyanidin B-3-3-o-gallate (compound D).

Dyeability with Silk Fabrics and Chemical Composition of Natural Dye PinuxTM Manufactured from Pinus Radiata Balk (라디아타 소나무 수피로부터 제조한 PinuxTM염료의 화학조성과 견섬유와의 염색성)

  • Song, Kyung-Hun;Mun, Sung-Phil;Kim, Dae-Sung;Hong, Young-Ki
    • Korean Journal of Human Ecology
    • /
    • v.18 no.6
    • /
    • pp.1315-1321
    • /
    • 2009
  • The chemical composition of natural powder dye $Pinux^{TM}$ manufactured from Pinus radiata bark and dyeability of dyed silk fabrics with $Pinux^{TM}$ were examined. It is made up of the optimum dyeing condition of silk fabric according to the dyeing concentration, dyeing time, and dyeing temperature. Also, we examined the colorfastness and antibiosis of dyed silk fabrics to washing, rubbing, perspiration and light. For the analysis of the chemical composition of $Pinux^{TM}$, the total contents of phenolic compound, proanthocyanidin(PA) and anti-oxidative activities of the dye were analyzed. As a result, it was found that the main components of the $Pinux^{TM}$ manufactured from Pinus radiata bark is proanthocyanidin, mostly a flavonoid containing a procyanidin structure, and it consists of approximately 63% phenol. As a result of examining the dyeability of silk fabrics with $Pinux^{TM}$, it showed that the dyeability was best under the conditions of the concentration of dye $1{\sim}1.5%$(wt/v%), dyeing time of 90 minutes, and dyeing temperature at $90^{\circ}C$. It was found that the colorfastness of dyed silk fabrics, colorfastness to washing, perspiration for acidic and rubbing were as good as grade 4 or 4-5. However, the colorfastness to light was low at grade 1, the same as the results of other natural dyed fabrics. As a result of the antibiosis measurement for the $Pinux^{TM}$-dyed silk fabrics, it showed high antibacterial properties to Staphylococcus sureus at 99.6%.