• Title/Summary/Keyword: processing load

Search Result 1,482, Processing Time 0.025 seconds

CDN Scalability Improvement using a Moderate Peer-assisted Method

  • Shi, Peichang;Wang, Huaimin;Yin, Hao;Ding, Bo;Wang, Tianzuo;Wang, Miao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.3
    • /
    • pp.954-972
    • /
    • 2012
  • Content Delivery Networks (CDN) server loads that fluctuant necessitate CDN to improve its service scalability especially when the peak load exceeds its service capacity. The peer assisted scheme is widely used in improving CDN scalability. However, CDN operators do not want to lose profit by overusing it, which may lead to the CDN resource utilization reduced. Therefore, improving CDN scalability moderately and guarantying CDN resource utilization maximized is necessary. However, when and how to use the peer-assisted scheme to achieve such improvement remains a great challenge. In this paper, we propose a new method called Dynamic Moderate Peer-assisted Method (DMPM), which uses time series analysis to predict and decide when and how many server loads needs to offload. A novel peer-assisted mechanism based on the prediction designed, which can maximize the profit of the CDN operators without influencing scalability. Extensive evaluations based on an actual CDN load traces have shown the effectiveness of DMPM.

High Temperature Deformation Behavior of Gamma TiAl Alloy - Microstructural Evolution and Mechanisms (Gamma TiAI 합금의 고온 변형거동 - 미세조직의 변화 및 변형기구)

  • 김정한;장영원;이종수
    • Transactions of Materials Processing
    • /
    • v.11 no.6
    • /
    • pp.529-537
    • /
    • 2002
  • A series of load-relaxation tests and tensile tests were conducted to study the high temperature deformation mechanism of fine duplex gamma TiAl alloy at temperatures ranging from 800 to 105$0^{\circ}C$. Results of load relaxation test showed that deformation behavior at a small imposed strain ($\varepsilon$≒0.05) was dominated by dislocation glide and dislocation climb. To investigate the deformation behavior at a large amount of strain, the processing map was constructed using a dynamic materials model. Two domains were characterized in the processing map obtained at a strain level of 0.6. One domain was found at the region of 98$0^{\circ}C$ and $10^{-3}/sec$ with a peak efficiency of 48%, which was identified as a domain of dynamic recrystallization from the microstructural observation. The order was observed at the region of 125$0^{\circ}C$ and $10^{-4}/sec$ with a peak efficiency of 64%. The strain rate sensitivity measured indicates that the material was deformed by the superplasticity in the region.

Minimum-Power Scheduling of Real-Time Parallel Tasks based on Load Balancing for Frequency-Sharing Multicore Processors (주파수 공유형 멀티코어 프로세서를 위한 부하균등화에 기반한 실시간 병렬 작업들의 최소 전력 스케줄링)

  • Lee, Wan Yeon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.6
    • /
    • pp.177-184
    • /
    • 2015
  • This paper proposes a minimum-power scheduling scheme of real-time parallel tasks while meeting deadlines of the real-time tasks on DVFS-enabled multicore processors. The proposed scheme first finds a floating number of processing cores to each task so that the computation load of all processing cores would be equalized. Next the scheme translates the found floating number of cores into a natural number of cores while maintaining the computation load of all cores unchanged, and allocates the translated natural number of cores to the execution of each task. The scheme is designed to minimize the power consumption of the frequency-sharing multicore processor operating with the same processing speed at an instant time. Evaluation shows that the scheme saves up to 38% power consumption of the previous method.

Classification Methods for Automated Prediction of Power Load Patterns (전력 부하 패턴 자동 예측을 위한 분류 기법)

  • Minghao, Piao;Park, Jin-Hyung;Lee, Heon-Gyu;Ryu, Keun-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.26-30
    • /
    • 2008
  • Currently an automated methodology based on data mining techniques is presented for the prediction of customer load patterns in long duration load profiles. The proposed our approach consists of three stages: (i) data pre-processing: noise or outlier is removed and the continuous attribute-valued features are transformed to discrete values, (ii) cluster analysis: k-means clustering is used to create load pattern classes and the representative load profiles for each class and (iii) classification: we evaluated several supervised learning methods in order to select a suitable prediction method. According to the proposed methodology, power load measured from AMR (automatic meter reading) system, as well as customer indexes, were used as inputs for clustering. The output of clustering was the classification of representative load profiles (or classes). In order to evaluate the result of forecasting load patterns, the several classification methods were applied on a set of high voltage customers of the Korea power system and derived class labels from clustering and other features are used as input to produce classifiers. Lastly, the result of our experiments was presented.

  • PDF

Development of the ELDC and Reliability Analysis of Composite Power System by Monte Carlo Method (Monte Carlo법에 의한 복합전력계통의 유효부하지속곡선 작성법 및 개발 및 신뢰도 해석)

  • Moon, Seung-Pil;Choi, Jae-Seok;Shin, Heung-Kyo;Lee, Sun-Young;Song, Kil-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.508-516
    • /
    • 1999
  • This paper presents a method for constructing composite power system effective load duration curves(CMELDC) at load points by Monte Carlo method. The concept of effective load duration curves(ELDC) in power system planning is useful and important in both HLII. CMELDC can be obtained from convolution integral processing of the probability function of unsupplied power and the load duration curve at each load point. This concept is analogy to the ELEC in HLI. And, the reliability indices (LOLP, EDNS) for composite power system are evaluated using CMELDC. Differences in reliability levels between HLI and HLII come from considering with the uncertainty associated with the outages of the transmission system. It is expected that the CMELDC can be applied usefully to areas such as reliability evaluation, probabilistic production cost simulation and analytical outage cost assessment, etc. in HLII, DC load flow and Monte Carlo method are used for this study. The characteristics and effectiveness of thes methodology are illustrated by a case study of the IEEE RTS.

  • PDF

A Study on Construction of the CMELDC at Load Points (각 부하지점별 유효부하지속곡선 작성법에 관한 연구)

  • Kim, Hong-Sik;Mun, Seung-Pil;Choe, Jae-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.4
    • /
    • pp.195-198
    • /
    • 2000
  • This paper illustrates a new method for constructing composite power system effective load duration curve(CMELDC) at load points. The main concept of proposed method is that the CMELDC can be obtain from convolution integral processing of the outage probabilistic distribution function of not supplied power and the load duration curve given at each load point. The effective load duration curve (ELDC) at HLI plays an important part in probabilistic production simulation, reliability evaluation, outage cost assessment and power supply margins assesment for power system planning and operation. And also, the CMELDC at HLII will extend the application areas of outage cost assessment and reliability evaluation at each load point. The CMELDC at load points using the Monte Carlo method and a DC load flow constrained LP have already been developed by authors. The effective load concept at HLII, however, has not been introduced sufficiently in last paper although the concept is important. In this paper, the main concept of the effective load at HLII which is proposed in this study is defined in details as the summation of the original load and the probabilistic loads caused by the forced outage of generators and transmission lines at this load point. The outage capacity probabilistic distribution function at HLII can be obtained by combining the not supplied powers and the probabilities of the not supplied powers at this load point. It si also expected that the proposed CMELDC can be applied usefully to research areas such as reliability evaluation, probabilistic production cost simulation and analytical outage cost assessment, etc. at HLII in future. The characteristics and effectiveness of this methodology are illustrated by case study of IEEE-RTS.

  • PDF

Multicore DVFS Scheduling Scheme Using Parallel Processing for Reducing Power Consumption of Periodic Real-time Tasks (주기적 실시간 작업들의 전력 소모 감소를 위한 병렬 수행을 활용한 다중코어 DVFS 스케줄링 기법)

  • Pak, Suehee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.1-10
    • /
    • 2014
  • This paper proposes a scheduling scheme that enhances power consumption efficiency of periodic real-time tasks using DVFS and power-shut-down mechanisms while meeting their deadlines on multicore processors. The proposed scheme is suitable for dependent multicore processors in which processing cores have an identical speed at an instant, and resolves the load unbalance of processing cores by exploiting parallel processing because the load unbalance causes inefficient power consumption in previous methods. Also the scheme activates a part of processing cores and turns off the power of unused cores. The number of activated processing cores is determined through mathematical analysis. Evaluation experiments show that the proposed scheme saves up to 77% power consumption of the previous method.

Study on Remote Face Recognition System Using by Multi Thread on Distributed Processing Server (분산처리서버에서의 멀티 쓰레드 방식을 적용한 원격얼굴인식 시스템)

  • Kim, Eui-Sun;Ko, Il-Ju
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.5
    • /
    • pp.19-28
    • /
    • 2017
  • Various methods for reducing the load on the server have been implemented in performing face recognition remotely by the spread of IP security cameras. In this paper, IP surveillance cameras at remote sites are input through a DSP board equipped with face detection function, and then face detection is performed. Then, the facial region image is transmitted to the server, and the face recognition processing is performed through face recognition distributed processing. As a result, the overall server system load and significantly reduce processing and real-time face recognition has the advantage that you can perform while linked up to 256 cameras. The technology that can accomplish this is to perform 64-channel face recognition per server using distributed processing server technology and to process face search results through 250 camera channels when operating four distributed processing servers there was.

Spatio-temporal Load Analysis Model for Power Facilities using Meter Reading Data (검침데이터를 이용한 전력설비 시공간 부하분석모델)

  • Shin, Jin-Ho;Kim, Young-Il;Yi, Bong-Jae;Yang, Il-Kwon;Ryu, Keun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1910-1915
    • /
    • 2008
  • The load analysis for the distribution system and facilities has relied on measurement equipment. Moreover, load monitoring incurs huge costs in terms of installation and maintenance. This paper presents a new model to analyze wherein facilities load under a feeder every 15 minutes using meter reading data that can be obtained from a power consumer every 15 minute or a month even without setting up any measuring equipment. After the data warehouse is constructed by interfacing the legacy system required for the load calculation, the relationship between the distribution system and the power consumer is established. Once the load pattern is forecasted by applying clustering and classification algorithm of temporal data mining techniques for the power customer who is not involved in Automatic Meter Reading(AMR), a single-line diagram per feeder is created, and power flow calculation is executed. The calculation result is analyzed using various temporal and spatial analysis methods such as Internet Geographic Information System(GIS), single-line diagram, and Online Analytical Processing (OLAP).

Croup Load Balancing Algorithm Using State Information Inference in Distributed System (분산시스템에서 상태 정보 추론을 이용한 그룹 부하 균등 알고리즘)

  • 정진섭;이재완
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1259-1268
    • /
    • 2002
  • One of the major goals suggested in distributed system is to improve the performance of the system through the load balancing of whole system. Load balancing among systems improves the rate of processor utilization and reduces the turnaround time of system. In this paper, we design the rule of decision-making and information interchange based on knowledge based mechanism which makes optimal load balancing by sharing the future load state information inferred from past and present information of each nodes. The result of performance evaluation shows that utilization of processors is balanced, the processing time is improved and reliability and availability of systems are enhanced. The proposed mechanism in this paper can be utilized in the design of load balancing algorithm in distributed operating systems.