• Title/Summary/Keyword: processes optimization

Search Result 807, Processing Time 0.025 seconds

Shikimate Metabolic Pathway Engineering in Corynebacterium glutamicum

  • Park, Eunhwi;Kim, Hye-Jin;Seo, Seung-Yeul;Lee, Han-Na;Choi, Si-Sun;Lee, Sang Joung;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1305-1310
    • /
    • 2021
  • Shikimate is a key high-demand metabolite for synthesizing valuable antiviral drugs, such as the anti-influenza drug, oseltamivir (Tamiflu). Microbial-based strategies for shikimate production have been developed to overcome the unstable and expensive supply of shikimate derived from traditional plant extraction processes. In this study, a microbial cell factory using Corynebacterium glutamicum was designed to overproduce shikimate in a fed-batch culture system. First, the shikimate kinase gene (aroK) responsible for converting shikimate to the next step was disrupted to facilitate the accumulation of shikimate. Several genes encoding the shikimate bypass route, such as dehydroshikimate dehydratase (QsuB), pyruvate kinase (Pyk1), and quinate/shikimate dehydrogenase (QsuD), were disrupted sequentially. An artificial operon containing several shikimate pathway genes, including aroE, aroB, aroF, and aroG were overexpressed to maximize the glucose uptake and intermediate flux. The rationally designed shikimate-overproducing C. glutamicum strain grown in an optimized medium produced approximately 37.3 g/l of shikimate in 7-L fed-batch fermentation. Overall, rational cell factory design and culture process optimization for the microbial-based production of shikimate will play a key role in complementing traditional plant-derived shikimate production processes.

A Parallel Genetic Algorithm for Solving Deadlock Problem within Multi-Unit Resources Systems

  • Ahmed, Rabie;Saidani, Taoufik;Rababa, Malek
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.175-182
    • /
    • 2021
  • Deadlock is a situation in which two or more processes competing for resources are waiting for the others to finish, and neither ever does. There are two different forms of systems, multi-unit and single-unit resource systems. The difference is the number of instances (or units) of each type of resource. Deadlock problem can be modeled as a constrained combinatorial problem that seeks to find a possible scheduling for the processes through which the system can avoid entering a deadlock state. To solve deadlock problem, several algorithms and techniques have been introduced, but the use of metaheuristics is one of the powerful methods to solve it. Genetic algorithms have been effective in solving many optimization issues, including deadlock Problem. In this paper, an improved parallel framework of the genetic algorithm is introduced and adapted effectively and efficiently to deadlock problem. The proposed modified method is implemented in java and tested on a specific dataset. The experiment shows that proposed approach can produce optimal solutions in terms of burst time and the number of feasible solutions in each advanced generation. Further, the proposed approach enables all types of crossovers to work with high performance.

Reverse Engineering of Aged Planner Miller Main Spindle Using Central Composite Design (중심합성계획법을 이용한 노후 플래너 밀러 주축 스핀들의 역설계에 관한 연구)

  • Kim, Hong-Rok;Chung, Won-Jee;Seol, Sang-Seok;Hong, Dae-Sun;Gong, Seok-Whan;Lee, Hyun-Jun;Lee, Seong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.36-42
    • /
    • 2022
  • Whereas the necessity for recycling and reuse is being emphasized owing to the depletion of resources and waste disposal problems caused by the continuous development of the industry, the importance of remanufacturing has been highlighted recently. Re-manufacturing involves a series of processes in which failed disposal or aging goods are recovered to a state similar to that of a new product. In this regard, machine tools, which are large structures, can achieve the effect of remanufacturing. Among the various elements constituting the machine tool, the main spindle portion that affects the processing precision is critical. Therefore, this study is conducted to derive improvement measures for the main axis of an old Miller planner via reverse engineering and central composite design, which is one of the core processes of remanufacturing.

Sectional analysis of stamping processes using Equilibrium approach (평형해법에 의한 스탬핑 공정의 단면 해석)

  • Yoon, J.W.;Yoo, D.J.;Song, I.S.;Yang, D.Y.;Lee, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.58-68
    • /
    • 1994
  • An equilibrium approach is suggested as an effective tool for the analysis of sheet metal forming processes on the basis of force balance together with geometric relations and plasticity theroy. In computing a force balance equation, it is required to define a geometric curve approximating the shape of the sheet metal at any step of deformation from the geometric interaction between the die and the deforming sheet. Then the geometic informations for contacting and non-contacting sections of the sheet metal such as the number and length of both non-contact region, contact angle, and die radius of contact section are known from the geometric forming curve and utilized for optimization by force balance equation. In computation, the sheet material is assumed to be of normal amisotropy and rigid-phastic workhardening. It has been shown that there are good agreements between the equilibrium approach and FEM computation for the benchmark test example and auto-body panels whose sections can be assumed in plane-strain state. The proposed equilibrium approach can thus be used as a robust computational method in estimating the forming defects and forming severity rather quickly in the die design stage.

  • PDF

Transmission Rate-Based Overhead Monitoring for Multimedia Streaming Optimization in Wireless Networks (무선 네트워크상에서 멀티미디어 스트리밍 최적화를 위한 전송율 기반의 오버헤드 모니터링)

  • Lee, Chong-Deuk
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.358-366
    • /
    • 2010
  • In the wireless network the congestion and delay occurs mainly when there are too many packets for the network to process or the sender transmits more packets than the receiver can accept. The congestion and delay is the reason of packet loss which degrades the performance of multimedia streaming. This paper proposes a novel transmission rate monitoring-based optimization mechanism to optimize packet loss and to improve QoS. The proposed scheme is based on the trade-off relationship between transmission rate monitoring and overhead monitoring. For this purpose this paper processes a source rate control-based optimization which optimizes congestion and delay. Performance evaluated RED, TFRC, and the proposed mechanism. The simulation results show that the proposed mechanism is more efficient than REC(Random Early Detection) mechanism and TFRC(TCP-friendly Rate Control) mechanism in packet loss rate, throughput rate, and average response rate.

Modeling, Simulation and Optimization of Hydrogen Production Process from Glycerol using Steam Reforming (글리세롤로부터 수증기 개질에 의한 수소 생산공정의 모델링, 시뮬레이션 및 최적화)

  • Park, Jeongpil;Cho, Sunghyun;Lee, Seunghwan;Moon, Dong Ju;Kim, Tae-Ok;Shin, Dongil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.727-735
    • /
    • 2014
  • For improved sustainability of the biorefinery industry, biorefinery-byproduct glycerol is being investigated as an alternate source for hydrogen production. This research designs and optimizes a hydrogen-production process for small hydrogen stations using steam reforming of purified glycerol as the main reaction, replacing existing processes relying on steam methane reforming. Modeling, simulation and optimization using a commercial process simulator are performed for the proposed hydrogen production process from glycerol. The mixture of glycerol and steam are used for making syngas in the reforming process. Then hydrogen are produced from carbon monoxide and steam through the water-gas shift reaction. Finally, hydrogen is separated from carbon dioxide using PSA. This study shows higher yield than former U.S. DOE and Linde studies. Economic evaluations are performed for optimal planning of constructing domestic hydrogen energy infrastructure based on the proposed glycerol-based hydrogen station.

A Survey of the Modeling of the Production Planning and Scheduling in an Integrated Steel Mill (일관제철소 생산계획 및 일정계획 모형에 관한 조사연구)

  • Seong, Deokhyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.263-281
    • /
    • 2017
  • Global optimization that considers the processes at integrated steel mills is more important than the local optimization to improve the efficiency of a single process. Research utilizing mathematical models at integrated steel mills predominantly focus on solving problems solely for a specific process or focusing on what techniques are applied to. However, it is important to define the problems that must be solved at the steelworks, identify the objectives and constraints that can be modeled, and selection of methodologies that can be applied to the problems. The purpose of this study is to investigate the problems in improving efficiency at integrated steel mills from the viewpoint of production & operations management. We review the research have been conducted in order to solve those problems. We classified the research into 6 categories and suggested future research direction based on the global optimization. It is expected that research themes for improving the efficiency at integrated steel mills will be derived.

Development of an Advanced Rotorcraft Preliminary Design Framework

  • Lim, Jae-Hoon;Shin, Sang-Joon;Kim, June-Mo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.134-139
    • /
    • 2009
  • Various modules are generally combined with one another in order to perform rotorcraft preliminary design and its optimization. At the stage of the preliminary design, analysis fidelity is less important than the rapid assessment of a design is. Most of the previous researchers attempted to implement sophisticated applications in order to increase the fidelity of analysis, but the present paper focuses on a rapid assessment while keeping the similar level of fidelity. Each small-sized module will be controlled by an externally-operated global optimization module. Results from each module are automatically handled from one discipline to another which reduces the amount of computational effort and time greatly when compared with manual execution. Automatically handled process decreases computational cycle and time by factor of approximately two. Previous researchers and the rotorcraft industries developed their own integrated analysis for rotorcraft design task, such as HESCOMP, VASCOMP, and RWSIZE. When a specific mission profile is given to these programs, those will estimate the aircraft size, performance, rotor performance, component weight, and other aspects. Such results can become good sources for the supplemental analysis in terms of stability, handling qualities, and cost. If the results do not satisfy the stability criteria or other constraints, additional sizing processes may be used to re-evaluate rotorcraft size based on the result from stability analysis. Trade-off study can be conducted by connecting disciplines, and it is an important advantage in a preliminary design study. In this paper among the existing rotorcraft design programs, an adequate program is selected for a baseline of the design framework, and modularization strategy will be applied and further improvements for each module be pursued.

Application of Operating Window to Robust Process Optimization of Sheet Metal Forming (기능창을 이용한 박판성형의 공정 최적화)

  • Kim, Kyungmo;Yin, Jeong Je;Suh, Yong S.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.110-121
    • /
    • 2009
  • It is essential to embed product quality in the design process to win the global competition. Many components found in many products including automobiles and electronic devices are fabricated using sheet metal forming processes. Wrinkle and fracture are two types of defects frequently found in the sheet metal forming process. Reducing such defects is a hard problem as they are affected by many uncontrollable factors. Attempts to solve the problem based on traditional deterministic optimization theories are often led to failures. Furthermore, the wrinkle and fracture are conflicting defects in such a way that reducing one defect leads to increasing the other. Hence, it is a difficult task to reduce both of them at the same time. In this research, a new design method for reducing the rates of conflicting defects under uncontrollable factors is presented by using operating window and a sequential search procedure. A new SN ratio is proposed to overcome the problems of a traditional SN ratio used in the operating window technique. The method is applied to optimizing the robust design of a sheet metal forming process. To show the effectiveness of the proposed method, a comparison is made between the traditional and the proposed methods using simulation software, applied to a design of particular sheet metal forming process problem. The results show that the proposed method always gives a more robust design that is less sensitive to noises than the traditional method.

  • PDF

A Cross Layer Optimization Technique for Improving Performance of MLC NAND Flash-Based Storages (MLC 낸드 플래시 기반 저장장치의 쓰기 성능 개선을 위한 계층 교차적 최적화 기법)

  • Park, Jisung;Lee, Sungjin;Kim, Jihong
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1130-1137
    • /
    • 2017
  • The multi-leveling technique that stores multiple bits in a single memory cell has significantly improved the density of NAND flash memory along with shrinking processes. However, because of the side effects of the multi-leveling technique, the average write performance of MLC NAND flash memory is degraded more than twice that of SLC NAND flash memory. In this paper, we introduce existing cross-layer optimization techniques proposed to improve the performance of MLC NAND flash-based storages, and propose a new integration technique that overcomes the limitations of existing techniques by exploiting their complementarity. By fully exploiting the performance asymmetry in MLC NAND flash devices at the flash translation layer, the proposed technique can handle many write requests with the performance of SLC NAND flash devices, thus significantly improving the performance of NAND flash-based storages. Experimental results show that the proposed technique improves performance 39% on average over individual techniques.