• Title/Summary/Keyword: processability

Search Result 168, Processing Time 0.03 seconds

Synthesis of Vertically Aligned SiNW/Carbon Core-shell Nanostructures

  • Kim, Jun-Hui;Kim, Min-Su;Kim, Dong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.488.2-488.2
    • /
    • 2014
  • Carbon-based materials such as carbon nanotubes and graphene have emerged as promising building blocks in applications for nanoelectronics and energy devices due to electrical property, ease of processability, and relatively inert electrochemistry. In recent years, there has been considerable interest in core-shell nanomaterials, in which inorganic nanowires are surrounded by inorganic or organic layers. Especially, carbon encapsulated semiconductor nanowires have been actively investigated by researchers in lithium ion batteries. We report a method to synthesize silicon nanowire (SiNW) core/carbon shell structures by chemical vapor deposition (CVD), using methane (CH4) as a precursor at growth temperature of $1000{\sim}1100^{\circ}C$. Unlike carbon-based materials synthesized via conventional routes, this method is of advantage of metal-catalyst free growth. We characterized these materials with FE-SEM, FE-TEM, and Raman spectroscopy. This would allow us to use these materials for applications ranging from optoelectronics to energy devices such as solar cells and lithium ion batteries.

  • PDF

Develpment of Textile-based Organic Solar Cell

  • Lee, Seung-U;Kim, Yeong-Min;Jeon, Ji-Hun;Lee, Yeong-Hun;Divij, Bhatia;Choe, Deok-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.460-460
    • /
    • 2014
  • Organic photovoltaic cells (OPV) have been extensively studied due to their unique properties such as flexibility, light-weight, easy processability, cost-effectiveness, and being environmental friendly. These advantages make them an attractive candidate for application in various novel fields and promising development with new features. Photovoltaic cell-integrated textiles have greatly attractive features as a power source for the smart textile solutions, and OPV is most ideal form factor due to advantage of flexibility. In this study, we develop a textile-based OPV through various experimental methods and we suggest the direction for the design of the photovoltaic textile. We used a textile electrode and tried to various layouts for textile-based OPV. Finally, we determined the contact area by using Hertzian theory for the calculation of power conversion efficiency (PCE). Based on the results of calculation, the short circuit current density, Isc, was $13.11mA/cm^2$ under AM 1.5condition and the PCE was around 2.5%.

  • PDF

Nanoparticle based Wearable Sensor (나노입자 기반의 웨어러블 센서)

  • Woo, Ho Kun;Ahn, Junhyuk;Oh, Soong ju
    • Ceramist
    • /
    • v.22 no.1
    • /
    • pp.4-16
    • /
    • 2019
  • Recently, wearable sensors have received considerable attention in a variety of research fields and industries as the importance of wearable healthcare systems, soft robotics and bio-integrated devices increased. However, expensive and complex processes are hindering the commercialization of wearable sensors. Nanoparticle presents some of solutions to these problems as its adjustable for processability and tunable properties. In this paper, the recent development of nanoparticle based pressure and strain sensors was reviewed, and a discussion on their strategies to overcome the conventional limitation and operating principles is presented.

Effects of Hydroxy Silicone Oil on Insulation Properties of Silicone Rubber(1) (Hydroxy Silicone Oil이 실리콘 고무의 절연특성에 미치는 영향(1))

  • 강동필;박효열;안명상;이웅재;이후범;오세호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1001-1007
    • /
    • 2003
  • The silicone fluids have been generally used as processing agent in silicone rubber(SIR) compounding. The addition of hydroxy silicone (HS) fluids to SIR for insulator housing material is required to meet the good electrical performance and the good processability. In this study, SIR with HS fluids was evaluated to investigate how the kinds of them affect insulation properties. The contact angle of the virgin sample of 40-HS SIR was low and its recovery rate was also slow. The recovery rate of 50-HS SIR was the highest being decreased with the viscosity increase of HS fluids. The tracking resistances and the corona aging resistance of 70-HS SIR and 1,040-HS SIR were excellent Tracking resistance depended largely on heat resistance of silicone fluids. But arc resistance didn't depend merely on the kind of silicone fluids.

Surface Characteristics of Silicone Rubber Processes by Corona Discharges (코로나 방전에 따른 실리콘 고무의 표면 특성)

  • 한동희;조한구;강동필;민경은
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.133-140
    • /
    • 2002
  • This paper aims to investigate the effect of silicone oils as processing agent affecting the loss and recovery of hydrophobicity. The recovery of hydrophobicity was evaluated by the measurement of the surface electrical resistivity and the contact angle on the SIR surface. Two kinds of silicone oils (1 and 2) having different molecular weight were selected under a consideration of hydrophobicity and processability. SIR specimens were exposed to corona discharges in air and the specimens were analyzed with contact angle and surface resistance measurements. It was observed that the contact angle and the surface resistivity of SIR increase gradually with testing time. The fast recovery of hydrophobicity of SIR, expressed by the increment of contact angle and surface resistivity, was showed in SIR2 containing silicone oil 2.

Functional Inks for Printed Electronics

  • Choi, Young-Min;Jeong, Sun-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.63.1-63.1
    • /
    • 2012
  • In recent years, the functional inks for printed electronics that can be combined with a variety of printing techniques have attracted increasingly significant interest for use in low cost, large area, high performance integrated electronics and microelectronics. In particular, the development of solution-processable conductor, semiconductor and insulator materials is of great importance as such materials have decisive impacts on the electrical performance of various electronic devices, and, therefore, need to meet various requirements including solution processability, high electrical performance, and environmental stability. Semiconductor inks such as IGO, CIGS are synthesized by chemical solution method and microwave reaction method for TFT and solar cell application. Fine circuit pattern with high conductivity, which is valuable for flexible electrode for PCB and TSP devices, can be printed with highly concentrated and stabilized conductor inks such as silver and copper. Solution processed insulator such as polyimide derivatives can be use to all printed TFT device. Our research results of functional inks for printed electronics provide a recent trends and issues on this area.

  • PDF

Comparison of the Properties of Molecular Composites Blends of Poly(vinyl alcohol)/Conducting Polymer (폴리비닐알콜/전도성고분자 분자복합체와 블렌드의 물성 비교)

  • Kwon, Ji-Yun;Kim, Young-Hee;Kim, Han-Do
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.29-32
    • /
    • 2001
  • Conductive polymers(CPs) are a relatively new class of organic materials displaying as their foremost property a high conductivity combined with very light weight, flexibility and reasonably facile processability[1]. Due to their high conductivity/weight ratio, they have recently evinced much interest in potential application as EMI shielding screens, coatings or jackets for flexible conductors, rechargeable batteries and as possible substitutes for metallic conductors or semiconductors in wide variety of electrical devices[2]. (omitted)

  • PDF

Investigation on The Effects of Processing Aids in Semiconductive Compounds for Extra High Voltage Cables (초고압 케이블용 반도전 재료에 미치는 가공 조제의 영향에 관한 연구)

  • Lee, Kyung-Won;Lee, Jung-Hee;Lee, Gun-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.112-115
    • /
    • 2002
  • The effects of processing aids(P.A.) in semicoductive compounds(S.C.) with highly loaded carbon black for extra high voltage cables were investigated. The processability of S.C. is improved as the contents of P.A. increased, however, the electrical, mechanical properties and smoothness of S.C. grew worse, especially for the S.C. which contains 5wt% of P.A., the volume resistivity after heat cycle which shows long term reliability increased about three times after 15cycles compared to the S.C. which contains no P.A. We inferred that it is caused by the action of P.A. as the insulating sites, thermal expansion of polymer matrix which leads the length between carbon blacks to shorten, and the decrease of degree of crosslinking. The change of ion contents which means cleanliness of S.C. is not occured regardless of the addition of P.A.

  • PDF

A study on the Measurement of the Coefficient of Thermal Expansion of Polymer materials Exposed to Different Thermal Environments (서로 다른 열환경에 노출된 고분자 소재의 열팽창계수 측정에 관한 연구)

  • Kim, Dong-Ju;Park, Seul-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.80-86
    • /
    • 2021
  • Plastics are widely used in mechanical and other fields due to their light weight, design flexibility, and molding processability. In processing plastics, defective products are mixed and reprocessed to improve production efficiency and reduce costs. In this study, an experiment was conducted to confirm the coefficient of thermal expansion of HDPE during this reprocessing. The coefficient of thermal expansion was measured at different measurement directions and heating rates. As a result, we observed that the coefficient of thermal expansion in the direction perpendicular to the injection direction is greater than that in the horizontal direction.

A Study on the Wear Characteristics of End Mill for CFRP Processing according to the Tool Materials and Coating Types (CFRP 가공용 엔드밀의 공구재종 및 코팅 종류에 따른 마모 특성에 관한 연구)

  • Cho, Jun Hyun;Yang, Dong Ho;Sa, Min-Woo;Lee, Jong Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.72-77
    • /
    • 2019
  • In this study, the wear characteristics of end mills for CFRP processing were investigated according to the tool materials and coating types. Three kinds of tool materials and two types of coatings were used for comparing the machining performance. The flank wear of the end mill tool and the surface condition of the workpiece were compared. The K6UF material shows the most excellent performance among the three materials used in the experiment. The Tetrabond coating showed better processability in comparison of two kinds of coatings.