• Title/Summary/Keyword: process variability

Search Result 459, Processing Time 0.026 seconds

A Simulation Model for the Intermittent Hydrologic Process (II) - Markov Chain and Continuous Probability Distribution - (간헐(間歇) 수문과정(水文過程)의 모의발생(模擬發生) 모형(模型)(II) - Markov 연쇄와 연속확률분포(連續確率分布) -)

  • Lee, Jae Joon;Lee, Jung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.523-534
    • /
    • 1994
  • The purpose of this study is to develop computer simulation model that produce precipitation patterns from stochastic model. In the paper(I) of this study, the alternate renewal process(ARP) is used for the daily precipitation series. In this paper(Il), stochastic simulation models for the daily precipitation series are developed by combining Markov chain for the precipitation occurrence process and continuous probability distribution for the precipitation amounts on the wet days. The precipitation occurrence is determined by first order Markov chain with two states(dry and wet). The amounts of precipitation, given that precipitation has occurred, are described by a Gamma, Pearson Type-III, Extremal Type-III, and 3 parameter Weibull distribution. Since the daily precipitation series shows seasonal variation, models are identified for each month of the year separately. To illustrate the application of the simulation models, daily precipitation data were taken from records at the seven locations of the Nakdong and Seomjin river basin. Simulated data were similar to actual data in terms of distribution for wet and dry spells, seasonal variability, and precipitation amounts.

  • PDF

Uncertainty Analysis of Quantitative Radar Rainfall Estimation Using the Maximum Entropy (Maximum Entropy를 이용한 정량적 레이더 강우추정 불확실성 분석)

  • Lee, Jae-Kyoung
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.511-520
    • /
    • 2015
  • Existing studies on radar rainfall uncertainties were performed to reduce the uncertainty for each stage by using bias correction during the quantitative radar rainfall estimation process. However, the studies do not provide quantitative comparison with the uncertainties for all stages. Consequently, this study proposes a suitable approach that can quantify the uncertainties at each stage of the quantitative radar rainfall estimation process. First, the new approach can present initial and final uncertainties, increasing or decreasing the uncertainty, and the uncertainty percentage at each stage. Furthermore, Maximum Entropy (ME) was applied to quantify the uncertainty in the entire process. Second, for the uncertainty quantification of radar rainfall estimation at each stage, this study used two quality control algorithms, two rainfall estimation relations, and two bias correction techniques as post-processing and progressed through all stages of the radar rainfall estimation. For the proposed approach, the final uncertainty (ME = 3.81) from the ME of the bias correction stage was the smallest while the uncertainty of the rainfall estimation stage was higher because of the use of an unsuitable relation. Additionally, the ME of the quality control was at 4.28 (112.34%), while that of the rainfall estimation was at 4.53 (118.90%), and that of the bias correction at 3.81 (100%). However, this study also determined that selecting the appropriate method for each stage would gradually reduce the uncertainty at each stage. Finally, the uncertainty due to natural variability was 93.70% of the final uncertainty. Thus, the results indicate that this new approach can contribute significantly to the field of uncertainty estimation and help with estimating more accurate radar rainfall.

Geometry-to-BIM Mapping Rule Definition for Building Plane BIM object (건축물 평면 형상에 대한 형상-to-BIM 맵핑 규칙 정의)

  • Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.236-242
    • /
    • 2019
  • Recently, scanning projects have been carried out in various construction and construction fields for maintenance purposes. The point cloud generated by the scan results is composed of a number of points representing the object to be scanned. The process of extracting the necessary information, including dimensions, from such scan data is called paradox. The reverse engineering process of modeling a point cloud as BIM involves considerable manual work. Owing to the time-consuming reverse engineering nature of the work, the costs increase exponentially when rework requests are made, such as design changes. Reverse engineering automation technology can help improve these problems. On the other hand, the reverse design product is variable depending on the use, and the kind and detail level of the product may be different. This paper proposes the G2BM (Geometry-to-BIM mapping) rule definition method that automatically maps a BIM object from a primitive geometry to a BIM object. G2BM proposes a process definition and a customization method for reverse engineering BIM objects that consider the use case variability.

Analysis of Productivity Differences in Steel Bridge Manufacturing Plants According to Resource Allocation Methods for the Bottleneck (병목공정 자원할당 방식에 따른 강교 제작공장 생산성 차이 분석)

  • Lee, Jaeil;Jeong, Eunji;Jeong, Keunchae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.2
    • /
    • pp.37-49
    • /
    • 2023
  • In this study, we proposed resource allocation methodologies to improve the productivity of steel bridge manufacturing plants based on the constraint theory which is very popular in the area of manufacturing industries. To this end, after defining the painting process as a bottleneck, three resource allocation methodologies were developed: Operation Specific Resource Allocation (OSRA), Product Specific Resource Allocation (PSRA), and General Resource Allocation (GRA). As a result of experiments for performance evaluation using a simulation model of the steel bridge supply chain, GRA showed the best performance in terms of the Number of Work-In-Process (NWIP) and Waiting Time (WT), in particular, as workload itself and its variability were increased, the performance gap with the specific resource allocation became further deepened. On average, GRA reduced NWIP by 36.2% and WT by 34.6% compared to OSRA, and reduced NWIP by 71.0% and WT by 70.4% compared to PSRA. The reduction of NWIP and WT means alleviating the bottleneck of the painting process, which eventually means that the productivity of the steel bridge manufacturing plant has improved.

Study of Motion-induced Dose Error Caused by Irregular Tumor Motion in Helical Tomotherapy (나선형 토모테라피에서 불규칙적인 호흡으로 발생되는 움직임에 의한 선량 오차에 대한 연구)

  • Cho, Min-Seok;Kim, Tae-Ho;Kang, Seong-Hee;Kim, Dong-Su;Kim, Kyeong-Hyeon;Cheon, Geum Seong;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.119-126
    • /
    • 2015
  • The purpose of this study is to analyze motion-induced dose error generated by each tumor motion parameters of irregular tumor motion in helical tomotherapy. To understand the effect of the irregular tumor motion, a simple analytical model was simulated. Moving cases that has tumor motion were divided into a slightly irregular tumor motion case, a large irregular tumor motion case and a patient case. The slightly irregular tumor motion case was simulated with a variability of 10% in the tumor motion parameters of amplitude (amplitude case), period (period case), and baseline (baseline case), while the large irregular tumor motion case was simulated with a variability of 40%. In the phase case, the initial phase of the tumor motion was divided into end inhale, mid exhale, end exhale, and mid inhale; the simulated dose profiles for each case were compared. The patient case was also investigated to verify the motion-induced dose error in 'clinical-like' conditions. According to the simulation process, the dose profile was calculated. The moving case was compared with the static case that has no tumor motion. In the amplitude, period, baseline cases, the results show that the motion-induced dose error in the large irregular tumor motion case was larger than that in the slightly irregular tumor motion case or regular tumor motion case. Because the offset effect was inversely proportion to irregularity of tumor motion, offset effect was smaller in the large irregular tumor motion case than the slightly irregular tumor motion case or regular tumor motion case. In the phase case, the larger dose discrepancy was observed in the irregular tumor motion case than regular tumor motion case. A larger motion-induced dose error was also observed in the patient case than in the regular tumor motion case. This study analyzed motion-induced dose error as a function of each tumor motion parameters of irregular tumor motion during helical tomotherapy. The analysis showed that variability control of irregular tumor motion is important. We believe that the variability of irregular tumor motion can be reduced by using abdominal compression and respiratory training.

Rainfall and Hydrological Comparative Analysis of Water Quality Variability in Euiam Reservoir, the North-Han River, Korea (북한강 의암호의 수질 변동성에 대한 강우·수문학적 비교분석)

  • Hwang, Soon-Jin;Sim, Yeon Bo;Choi, Bong-Geun;Kim, Keonhee;Park, Chaehong;Seo, Wanbum;Park, Myung-Hwan;Lee, Su-Woong;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.29-45
    • /
    • 2017
  • This study explored spatiotemporal variability of water quality in correspondence with hydro-meteorological factors in the four stations of Euiam Reservoir located in the upstream region of the North-Han River from May 2012 to December 2015. Seasonal effect was apparent in the variation of water temperature, DO, electric conductivity and TSS during the study period. Stratification in the water column was observed in the near dam site every year and vanished between August and October. Increase of nitrogen nutrients was observed when inflowing discharge was low, while phosphorus increase was distinct both during the early season with increase of inflowing discharge and the period of severe draught persistent. Duration persisting high concentration of Chl-a (>$25mg\;m^{-3}$: the eutrophic status criterion, OECD, 1982) was 1~2 months of the whole year in 2014~2015, while it was almost 4 months in 2013. Water quality of Euiam Reservoir appeared to be affected basically by geomorphology and source of pollutants, such as longitudinally linked instream islands and Aggregate Island, inflowing urban stream, and wastewater treatment plant discharge. While inflowing discharge from the dams upstream and outflow pattern causing water level change seem to largely govern the variability of water quality in this particular system. In the process of spatiotemporal water quality change, factors related to climate (e.g. flood, typhoon, abruptly high rainfall, scorching heat of summer), hydrology (amount of flow and water level) might be attributed to water pulse, dilution, backflow, uptake, and sedimentation. This study showed that change of water quality in Euiam Reservoir was very dynamic and suggested that its effect could be delivered to downstream (Cheongpyeong and Paldang Reservoirs) through year-round discharge for hydropower generation.

Total sizing system (총 사이징 시스템)

  • Proverb, Robert J.;Pawlowska, Lucyna;Komarowska, Kasia;Garro, Gina;Dilts, Kimberly
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2004.07a
    • /
    • pp.19-42
    • /
    • 2004
  • Sizing properties in paper are generally developed through the application of both internal and surface sizes. Rosin, wax, and synthetic sizes including ASA, AKD, and stearic anhydride are and have been used to provide wet-end sizing to paper. In many cases, the use of some of these sizes leads to runnability problems that are inherent in the wet-end operation. Variability in furnish, fines, broke, filler, water chemistry, conductivity, and pH control impacts the wet-end operation. Size press chemicals including starch and polymers such as styrene-acrylic, styrene-maleic, and styrene acrylate emulsions are used in conjunction with internal sizes to improve the paper surface for printing and strength properties, porosity, and opacity improvement. This paper will discuss results from a new, proprietary formulation and process that allows application of sizing chemistry more totally at the size press with reduced emphasis on wet end sizing. Runnability issues are thus minimized at the wet-end, chemical usage is more efficient, and significant cost savings can be realized. Case histories will be presented illustrating the advantages of this new application in commercial trials.

  • PDF

Preservice Elementary Teachers' Perceptions on Models Used in Science and Science Education (과학과 과학 교육에서 사용되는 모델에 관한 예비 초등 교사들의 인식)

  • Oh, Phil-Seok
    • Journal of Korean Elementary Science Education
    • /
    • v.28 no.4
    • /
    • pp.450-466
    • /
    • 2009
  • The purpose of this study was to explore preservice elementary teachers' perceptions on models used in science and science education. Participants were sixty-one undergraduate students who were enrolled in a science education course offered at a university of education located in a mid-sized city, Korea. Data were obtained from the participants at the beginning of the course when they provided their answers to a questionnaire about models. The analysis revealed that a large number of the preservice teachers perceived models as representative of physical realities. By contrast, a relatively small number of them viewed models as representations of ideas or things like theories or hypotheses. Lots of the participants were apt to define a model from the perspective of its functions and considered the purposes of models communication, teaching, and understanding as well as visualization, simplification, and clarification. Most of the preservice teachers believed that there could be multiple models for a single target, and all of them answered that models could be changed in science. It was therefore concluded that the preservice teachers perceived properly the multiplicity and variability of models. Nevertheless, they could not elaborate how a model is used and evaluated in the process of scientific inquiry, and just a few of them mentioned the detailed nature of models. The preservice teachers possessed teacher-centered views of using models in the science classroom, and a small number of them remarked that they were going to use models for students to develop their own models and perform scientific inquiry.

  • PDF

A Study on Cyclic Variation by Idling in Gasoline Vehicle (가솔린자동차의 무부하 운전에서 사이클변동에 관한 연구)

  • Han, Sung-Bin;Kim, Sung-Mo
    • Journal of Energy Engineering
    • /
    • v.18 no.3
    • /
    • pp.156-162
    • /
    • 2009
  • Cylinder-pressure based combustion analysis provides a mechanism through which a combustion researcher can understand the combustion process. This paper was to identify the most significant sources of cycle-to-cycle combustion variability in a spark ignition engine at idle. To analyse the cyclic variation in the test engine, the burn parameters are determined on a cycle-to-cycle basis through analysis of the engine pressure data. The burn rate analysis program was used in the analysis of the data. Burn parameters were used to determine the variations in the input parameter-i.e., fuel, air, residual mass, and so on.

Structure and Challenges of a Security Policy on Small and Medium Enterprises

  • Almeida, Fernando;Carvalho, Ines;Cruz, Fabio
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.747-763
    • /
    • 2018
  • Information Technology (IT) plays an increasingly important role for small and medium-sized enterprises. It has become fundamental for these companies to protect information and IT assets in relation to risks and threats that have grown in recent years. This study aims to understand the importance and structure of an information security policy, using a quantitative study that intends to identify the most important and least relevant elements of an information security policy document. The findings of this study reveal that the top three most important elements in the structure of a security policy are the asset management, security risk management and define the scope of the policy. On the other side, the three least relevant elements include the executive summary, contacts and manual inspection. Additionally, the study reveals that the importance given to each element of the security policy is slightly changed according to the sectors of activity. The elements that show the greatest variability are the review process, executive summary and penalties. On the other side, the purpose of the policy and the asset management present a stable importance for all sectors of activity.