• Title/Summary/Keyword: process optimization

Search Result 4,782, Processing Time 0.034 seconds

Optimization for the Process of Osmotic Dehydration for the Manufacturing of Dried Kiwifruit (건조키위 제조를 위한 삼투건조공정의 최적화)

  • Hong, Joo-Hun;Youn, Kwang-Seob;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.348-355
    • /
    • 1998
  • The developments of various processed foods and the high quality dried fruits, in particular, are urgently needed for the enhancement of fruit consumption and their competitive values. Therefore, in this study, three variables by three level factorial design and response surface methodology were used to determine optimum conditions for osmotic dehydration of kiwifruit. The relationships of moisture losses, solid gains, weight reductions, sugar contents, titratable acidities and vitamin C contents depending on changes with temperature, sugar concentration and immersion time were investigated. The moisture loss, solid gain, weight reduction and reduction of moisture content after osmotic dehydration were increased as temperature, sugar concentration and immersion time increased. The effect of concentration was more significant than those of temperature and time on mass transfer. Sugar content was increased by increasing sugar concentration, temperature, immersion time during osmotic dehydration. Titratable acidity and vitamin C content were increased by decreasing temperature, immersion time and increasing concentration during osmotic dehydration. The regression models showed a significant lack of fit (P>0.05) and were highly significant with satisfying values of $R^2$. At the given conditions such as $66{\sim}69%$ moisture content, above $24^{\circ}Brix$ sugar content and more than 23 mg% vitamin C, the optimum condition for osmotic dehydration was $37^{\circ}C,\;55^{\circ}Brix$ and 1.5 hour.

  • PDF

Optimization of Conditions for the Microencapsulation of ${\alpha}-Tocopherol$ and Its Storage Stability (${\alpha}-Tocopherol$ 미세캡슐화의 최적화 및 저장안정성 규명)

  • Chang, Pahn-Shick;Ha, Jae-Seok;Roh, Hoe-Jin;Choi, Jin-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.843-850
    • /
    • 2000
  • We have produced the microcapsule composed of ${\alpha}-tocopherol$ as a core material (Cm) and the gelatinized polysaccharide as a wall material (Wm). Firstly, we have developed a simple, sensitive, and quantitative analysis method of the microencapsulation product using 5% cupric acetate pyridine solution. We could then optimize all the conditions for the microencapsulation process such as the ratio of [Cm] to [Wm], the temperature of dispersion fluid, and the emulsifier concentration using response surface methodology (RSM). As for the microencapsulation of ${\alpha}-tocopherol$, the regression model equation for the yield of microencapsulation (YM, %) to the change of an independent variable could be predicted as follows : YM=99.77-1.76([Cm]:[Wm])-1.72$([Cm]\;:\;[Wm])^2$. From the ridge of maximum response, the optimum conditions for the microencapsulation of ${\alpha}-tocopherol$ were able to be determined as the ratio of [Cm] to [Wm] of 4.6:5.4(w/w), the emulsifier concentration of 0.49%, and dispersion fluid temperature of $25.5^{\circ}C$, respectively. Finally, the microcapsules produced under the optimal conditions were applied for the analysis of storage stability. The optimal conditions for the storage were found to be the values of pH 9.0 and $25{\sim}35^{\circ}C$. And the storage stability of the microcapsules containing ${\alpha}-tocopherol$ were higher than 99% for a week at pH 9.0 and $25^{\circ}C$.

  • PDF

Optimization of Betacyanin Production by Red Beet (Beta vulgaris L.) Hairy Root Cultures. (Red Beet의 모상근 배양을 이용한 천연색소인 Betacyanin 생산의 최적화)

  • Kim, Sun-Hee;Kim, Sung-Hoon;Lee, Jo-No;An, Sang-Wook;Kim, Kwang-Soo;Hwnag, Baik;Lee, Hyeong-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.5
    • /
    • pp.435-441
    • /
    • 1998
  • Optimal conditions for the production of natural color, betacyanin were investigated by varying light intensity, C/N ratio, concentrations of phosphate and kinds of elicitors. Batch cultivation was employed to characterize cell growth and betacyanin production of 32 days. The maximum specific growth rate, ${\mu}$$\sub$max/, was 0.3 (1/day) for batch cultivation. The maximum specific production rate, q$\^$max/$\sub$p/, was enhanced 0.11 (mg/g-cell/day) at 3 klux. A light intensity of 3 klux was shown to the best for both cell growth and betacyanin production. The maximum specific production rate was 0.125 (mg/g-cell/day) at 0.242 (1/day), the maximum specific growth rate. The dependence of specific growth rate on the light lintensity is fit to the photoinhibition model. The correlation between ${\mu}$ and q$\sub$p/ showed that the product formation parameters, ${\alpha}$ and ${\beta}$$\sub$p/ were 0.3756 (mg/cell) and 0.001 (mg/g-cell/day), respectively. The betacyanin production was partially cell growth related process, which is different from the production of a typical product in plant cell cultures. In C/N ratio experiment, high carbon concentration, 42.1 (w/w) improved cell growth rate while lower concentration, 31.6 (w/w) increased the betacyanin production rate. The ${\mu}$$\sub$max/ and q$\^$max/$\sub$p/ were 0.26 (1/day) and 0.075 (mg/g-cell/day), respectively. Beta vulgaris L. cells under 1.25 mM phosphate concentration produced 10.15 mg/L betacyanin with 13.46 (g-dry wt./L) of maximum cell density. The production of betacyanin was elongated by adding 0.1 ${\mu}$M of kinetin. This also increased the cell growth. Optimum culture conditions of light intensity, C/N, phosphate concentration were obtained as 5.5 klux, 27 (w/w), 1.25 mM, respectively by the response surface methodology. The maximum cell density, X$\sub$max/, and maximum production, P$\sub$max/, in optimized conditions were 16 (g-dry wt./L), 12.5 (mg/L) which were higher than 8 (g-dry wt./L), 4.48 (mg/L) in normal conditions. The ${\mu}$$\sub$max/ and q$\^$max/$\sub$p/ were 0.376 (1/day) and 0.134 (mg/g-cell/day) at the optimal condition. The overall results may be useful in scaling up hairy root cell culture system for commercial production of betacyanin.

  • PDF

Optimization of PS-7 Production Process by Azotobacter indicus var. myxogenes L3 Using the Control of Carbon Source Composition (탄소원 조성 조절을 이용한 Azotobacter indicus var. myxogenes L3로부터 PS-7 생산 최적화)

  • Ra, Chae-Hun;Kim, Ki-Myong;Hoe, Pil-Woo;Lee, Sung-Jae;Kim, Sung-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.61-66
    • /
    • 2008
  • The proteins in whey are separated and used as food additives. The remains (mainly lactose) are spray-dried to produce sweet whey powder, which is widely used as an additive for animal feed. Sweet whey powder is also used as a carbon source for the production of valuable products such as polysaccharides. Glucose, fructose, galactose, and sucrose as asupplemental carbon source were evaluated for the production of PS-7 from Azotobacter indicus var. myxogenes L3 grown on whey based MSM media. Productions of PS-7 with 2% (w/v) fructose and sucrose were 2.05 and 2.31g/L, respectively. The highest production of PS-7 was 2.82g/L when 2% (w/v) glucose was used as the carbon source. Galactose showed low production of PS-7 among the carbon sources tested. The effects of various carbon sources addition to whey based MSM medium showed that glucose could be the best candidate for the enhancement of PS-7 production using whey based MSM medium. To evaluate the effect of glucose addition to whey based media on PS-7 production, fermentations with whey and glucose mixture (whey 1, 2, 3%; whey 1% + glucose 1%, whey 1% + glucose 2% and glucose 2%, w/v) were carried out. Significant enhancement of PS-7 production with addition of 1% (w/v) and 2% (w/v) glucose in 1% (w/v) whey media was observed. The PS-7 concentration of 2% glucose added whey lactose based medium was higher than that of 1% glucose addition, however, the product yield $Y_{p/s}$ was higher in 1% glucose added whey lactose based MSM medium. Therefore, the optimal condition for the PS-7 production from the Azotobacter indicus var.myxogenes L3, was 1% glucose addition to 1% whey lactose MSM medium.

Extraction & Purification of ${\beta}$-carotene from Recombinant Escherichia coli (재조합 대장균으로부터 고순도 베타-카로틴의 추출 및 정제)

  • Jo, Ji-Song;Nguyen, Do Quynh Anh;Yun, Jun-Ki;Kim, Yu-Na;Kim, You-Geun;Kim, Sung-Bae;Seo, Yang-Gon;Lee, Byung-Hak;Kang, Moon-Kook;Kim, Chang-Joon
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.3
    • /
    • pp.231-237
    • /
    • 2009
  • This paper aimed to develop a solvent extraction and purification process to recover high-purified ${\beta}$-carotene from recombinant Escherichia coli. Cells harvested from the culture broth were treated through numerous steps: dehydration, solvent extraction, crystal formation and separation. To optimize the extracting condition, experiments were carried out to investigate the effect of cell disruption, temperature, organic solvents, solvent-biomass ratio on the yield of ${\beta}$-carotene extracted from cells. The result indicated that no significant differences of extraction yield were observed from cells with or without step of cell disruption. Among different extracting solvents, the highest extraction yield of ${\beta}$-carotene, 30.3 mg-${\beta}$-carotene/g-dry cells, was obtained with isobutyl acetate at solvent-biomass ratio 25 mL/g-dry cells at $50^{\circ}C$. Notably, in case of acetone, the extraction yield was quite low when using acetone itself, but increased almost up to the highest value when combining this solvent and olive oil. The purity of ${\beta}$-carotene crystals obtained from crystallization and separation was 89%. The purity degree was further improved up to 98.5% by treating crude crystals with additional ethanol washing.

Optimization of Pre-treatment of Tropical Crop Oil by Sulfuric Acid and Bio-diesel Production (황산을 이용한 열대작물 오일의 전처리 반응 최적화 및 바이오디젤 생산)

  • Kim, Deog-Keun;Choi, Jong-Doo;Park, Ji-Yeon;Lee, Jin-Suk;Park, Seung-Bin;Park, Soon-Chul
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.762-767
    • /
    • 2009
  • In this study, the feasibility of using vegetable oil extracted from tropical crop seed as a biodiesel feedstock was investigated by producing biodiesel and analysing the quality parameters as a transport fuel. In order to produce biodiesel efficiently, two step reaction process(pre-treatment and transesterificaion) was required because the tropical crop oil have a high content of free fatty acids. To determine the suitable acid catalyst for the pre-esterification, three kinds of acid catalysts were tested and sulfuric acid was identified as the best catalyst. After constructing the experimental matrix based on RSM and analysing the statistical data, the optimal pre-treatment conditions were determined to be 26.7% of methanol and 0.982% of sulfuric acid. Trans-esterification experiments of the pre-esterified oil based on RSM were carried out, then discovered 1.24% of KOH catalyst and 22.76% of methanol as the optimal trans-esterification conditions. However, the quantity of KOH was higher than the previously established KOH concentration of our team. So, we carried out supplemental experiment to determine the quantity of catalyst and methanol. As a result, the optimal transesterification conditions were determined to be 0.8% of KOH and 16.13% of methanol. After trans-esterification of tropical crop oil, the produced biodiesel could meet the major quality standard specifications; 100.8% of FAME, 0.45 mgKOH/g of acid value, 0.00% of water, 0.04% of total glycerol, $4.041mm^2/s$ of kinematic viscosity(at $40^{\circ}C$).

The Effect of Supply Chain Dynamic Capabilities, Open Innovation and Supply Uncertainty on Supply Chain Performance (공급사슬 동적역량, 개방형 혁신, 공급 불확실성이 공급사슬 성과에 미치는 영향)

  • Lee, Sang-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.481-491
    • /
    • 2018
  • As the global business environment is dynamic, uncertain, and complex, supply chain management determines the performance of the supply chain in terms of the utilization of resources and capabilities of companies involved in the supply chain. Companies pursuing open innovation gain greater access to the external environment and accumulate knowledge flows and learning experiences, and may generate better business performance from dynamic capabilities. This study analyzed the effects of supply chain dynamic capabilities, open innovation, and supply uncertainty on supply chain performance. Through questionnaires on 178 companies listed on KOSDAQ, empirical results are as follows: First, integration and reactivity capabilities among supply chain dynamic capabilities have a positive effect on supply chain performance. Second, the moderating effect of open innovation showed a negative correlation in the case of information exchange, and a positive correlation in the cases of integration, cooperation and reactivity. Third, two of the 3-way interaction terms, "information exchange*open innovation*supply uncertainty" and "integration*open innovation*supply uncertainty" were statistically significant. The implications of this study are as follows: First, as the supply chain needs to achieve optimization of the whole process between supply chain components rather than individual companies, dynamic capabilities play an important role in improving performance. Second, for KOSDAQ companies featuring limited capital resources, open innovation that integrates external knowledge is valuable. In order to increase synergistic effects, it is necessary to develop dynamic capabilities accordingly. Third, since resources are constrained, managers must determine the type or level of capabilities and open innovation in accordance with supply uncertainty. Since this study has limitations in analyzing survey data, it is necessary to collect secondary data or longitudinal data. It is also necessary to further analyze the internal and external factors that have a significant impact on supply chain performance.

Optimization of Image Tracking Algorithm Used in 4D Radiation Therapy (4차원 방사선 치료시 영상 추적기술의 최적화)

  • Park, Jong-In;Shin, Eun-Hyuk;Han, Young-Yih;Park, Hee-Chul;Lee, Jai-Ki;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.8-14
    • /
    • 2012
  • In order to develop a Patient respiratory management system includinga biofeedback function for4-dimentional radiation therapy, this study investigated anoptimal tracking algorithmfor moving target using IR (Infra-red) camera as well as commercial camera. A tracking system was developed by LabVIEW 2010. Motion phantom images were acquired using a camera (IR or commercial). After image process were conducted to convert acquired image to binary image by applying a threshold values, several edge enhance methods such as Sobel, Prewitt, Differentiation, Sigma, Gradient, Roberts, were applied. The targetpattern was defined in the images, and acquired image from a moving targetwas tracked by matching pre-defined tracking pattern. During the matching of imagee, thecoordinateof tracking point was recorded. In order to assess the performance of tracking algorithm, the value of score which represents theaccuracy of pattern matching was defined. To compare the algorithm objectively, we repeat experiments 3 times for 5 minuts for each algorithm. Average valueand standard deviations (SD) of score were automatically calculatedsaved as ASCII format. Score of threshold only was 706, and standard deviation was 84. The value of average and SD for other algorithms which combined edge detection method and thresholdwere 794, 64 in Sobel, 770, 101 in Differentiation, 754, 85 in Gradient, 763, 75 in Prewitt, 777, 93 in Roberts, and 822, 62 in Sigma, respectively. According to score analysis, the most efficient tracking algorithm is the Sigma method. Therefore, 4-dimentional radiation threapy is expected tobemore efficient if threshold and Sigma edge detection method are used together in target tracking.

Mass Screening of Lovastatin High-yielding Mutants through Statistical Optimization of Sporulation Medium and Application of Miniaturized Fungal Cell Cultures (Lovastatin 고생산성 변이주의 신속 선별을 위해 통계적 방법을 적용한 Sporulation 배지 개발 및 Miniature 배양 방법 개발)

  • Ahn, Hyun-Jung;Jeong, Yong-Seob;Kim, Pyeung-Hyeun;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.297-304
    • /
    • 2007
  • For large and rapid screening of high-yielding mutants of lovastatin produced by filamentous fungal cells of Aspergillus terreus, one of the most important stage is to test as large amounts of mutated strains as possible. For this purpose, we intended to develop a miniaturized cultivation method using $7m{\ell}$ culture tube instead of traditional $250m{\ell}$ flask (working volume $50m{\ell}$). For obtaining large amounts of conidiospores to be used as inoculums for miniaturized cultures, 4 components i.e., glucose, sucrose, yeast extract and $KH_2PO_4$ were intensively investigated, which had been observed to show positive effect on enhancement of spore production through Plackett-Burman design experimet. When optimum concentrations of these components that were determined through application of response surface method (RSM) based on central composite design (CCD) were used, maximum spore numbers amounting to $1.9\times10^{10}$ spores/plate were obtained, resulting in approximately 190 fold increase as compared to the commonly used PDA sporulation medium. Using the miniaturized cultures, intensive strain development programs were carried out for screening of lovastatin high-yielding as well as highly reproducible mutants. It was observed that, for maximum production of lovastatin, the producers should be activated through 'PaB' adaptation process during the early solid culture stage. In addition, they should be proliferated in condensed filamentous forms in miniaturized growth cultures, so that optimum amounts of highly active cells could be transferred to the production culture-tube as reproducible inoculums. Under these highly controlled fermentation conditions, compact-pelleted morphology of optimum size (less than 1 mm in diameter) was successfully induced in the miniaturized production cultures, which proved essential for maximal utilization of the producers' physiology leading to significantly enhanced production of lovastatin. As a result of continuous screening in the miniaturized cultures, lovastatin production levels of the 81% of the daughter cells derived from the high-yielding producers turned out to be in the range of 80%$\sim$120% of the lovastatin production level of the parallel flask cultures. These results demonstrate that the miniaturized cultivation method developed in this study is efficient high throughput system for large and rapid screening of highly stable and productive strains.

An Estimation of Price Elasticities of Import Demand and Export Supply Functions Derived from an Integrated Production Model (생산모형(生産模型)을 이용(利用)한 수출(輸出)·수입함수(輸入函數)의 가격탄성치(價格彈性値) 추정(推定))

  • Lee, Hong-gue
    • KDI Journal of Economic Policy
    • /
    • v.12 no.4
    • /
    • pp.47-69
    • /
    • 1990
  • Using an aggregator model, we look into the possibilities for substitution between Korea's exports, imports, domestic sales and domestic inputs (particularly labor), and substitution between disaggregated export and import components. Our approach heavily draws on an economy-wide GNP function that is similar to Samuelson's, modeling trade functions as derived from an integrated production system. Under the condition of homotheticity and weak separability, the GNP function would facilitate consistent aggregation that retains certain properties of the production structure. It would also be useful for a two-stage optimization process that enables us to obtain not only the net output price elasticities of the first-level aggregator functions, but also those of the second-level individual components of exports and imports. For the implementation of the model, we apply the Symmetric Generalized McFadden (SGM) function developed by Diewert and Wales to both stages of estimation. The first stage of the estimation procedure is to estimate the unit quantity equations of the second-level exports and imports that comprise four components each. The parameter estimates obtained in the first stage are utilized in the derivation of instrumental variables for the aggregate export and import prices being employed in the upper model. In the second stage, the net output supply equations derived from the GNP function are used in the estimation of the price elasticities of the first-level variables: exports, imports, domestic sales and labor. With these estimates in hand, we can come up with various elasticities of both the net output supply functions and the individual components of exports and imports. At the aggregate level (first-level), exports appear to be substitutable with domestic sales, while labor is complementary with imports. An increase in the price of exports would reduce the amount of the domestic sales supply, and a decrease in the wage rate would boost the demand for imports. On the other hand, labor and imports are complementary with exports and domestic sales in the input-output structure. At the disaggregate level (second-level), the price elasticities of the export and import components obtained indicate that both substitution and complement possibilities exist between them. Although these elasticities are interesting in their own right, they would be more usefully applied as inputs to the computational general equilibrium model.

  • PDF