• Title/Summary/Keyword: process mining

Search Result 1,061, Processing Time 0.026 seconds

Fuzzy Web Usage Mining for User Modeling

  • Jang, Jae-Sung;Jun, Sung-Hae;Oh, Kyung-Whan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.204-209
    • /
    • 2002
  • The interest of data mining in artificial intelligence with fuzzy logic has been increased. Data mining is a process of extracting desirable knowledge and interesting pattern ken large data set. Because of expansion of WWW, web data is more and more huge. Besides mining web contents and web structures, another important task for web mining is web usage mining which mines web log data to discover user access pattern. The goal of web usage mining in this paper is to find interesting user pattern in the web with user feedback. It is very important to find user's characteristic fer e-business environment. In Customer Relationship Management, recommending product and sending e-mail to user by extracted users characteristics are needed. Using our method, we extract user profile from the result of web usage mining. In this research, we concentrate on finding association rules and verify validity of them. The proposed procedure can integrate fuzzy set concept and association rule. Fuzzy association rule uses given server log file and performs several preprocessing tasks. Extracted transaction files are used to find rules by fuzzy web usage mining. To verify the validity of user's feedback, the web log data from our laboratory web server.

Analysis of Business Process in the SCM Sector Using Data Mining (데이터마이닝을 활용한 SCM 부문에서의 비즈니스 프로세스 분석)

  • Lee, Sang-Young;Lee, Yun-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.59-67
    • /
    • 2006
  • If apply BPM that is a business process management tool to SCM sector, efficient process management and control are available. Also, BPM can execute integrating process that compose SCM effectively. These access method does to manage progress process of SCM process more efficiently and do monitoring. Also, It is can be establish plan about improvement of process analyzing process achievement result. Thus, in this paper, introduce this BPM into SCM environment. Also, SCM process presents plan that executes integration and improves business process effectively applying data mining technique.

  • PDF

Scenarios for Manufacturing Process Data Analysis using Data Mining (데이터 마이닝을 이용한 생산공정 데이터 분석 시나리오)

  • Lee, Hyoung-wook;Bae, Sung-min
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.41-44
    • /
    • 2013
  • Process and manufacturing data are numerously accumulated to the enterprise database in industries but little of those data are utilized. Data mining can support a decision to manager in process from the data. However, it is not easy to field managers because a proper adoption of various schemes is very difficult. In this paper, six scenarios are conducted using data mining schemes for the various situations of field claims such as yield problem, trend analysis and prediction of yield according to changes of operating conditions, etc. Scenarios, like templates, of various analysis situations are helpful to users.

  • PDF

Defect Type Prediction Method in Manufacturing Process Using Data Mining Technique (데이터마이닝 기법을 이용한 제조 공정내의 불량항목별 예측방법)

  • Byeon Sung-Kyu;Kang Chang-Wook;Sim Seong-Bo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.2
    • /
    • pp.10-16
    • /
    • 2004
  • Data mining technique is the exploration and analysis, by automatic or semiautomatic means, of large quantities of data in order to discover meaningful patterns and rules. This paper uses a data mining technique for the prediction of defect types in manufacturing Process. The Purpose of this Paper is to model the recognition of defect type Patterns and Prediction of each defect type before it occurs in manufacturing process. The proposed model consists of data handling, defect type analysis, and defect type prediction stages. The performance measurement shows that it is higher in prediction accuracy than logistic regression model.

Analyzing Production Data using Data Mining Techniques (데이터마이닝 기법의 생산공정데이터에의 적용)

  • Lee H.W.;Lee G.A.;Choi S.;Bae K.W.;Bae S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.143-146
    • /
    • 2005
  • Many data mining techniques have been proved useful in revealing important patterns from large data sets. Especially, data mining techniques play an important role in a customer data analysis in a financial industry and an electronic commerce. Also, there are many data mining related research papers in a semiconductor industry and an automotive industry. In addition, data mining techniques are applied to the bioinformatics area. To satisfy customers' various requirements, each industry should develop new processes with more accurate production criteria. Also, they spend more money to guarantee their products' quality. In this manner, we apply data mining techniques to the production-related data such as a test data, a field claim data, and POP (point of production) data in the automotive parts industry. Data collection and transformation techniques should be applied to enhance the analysis results. Also, we classify various types of manufacturing processes and proposed an analysis scheme according to the type of manufacturing process. As a result, we could find inter- or intra-process relationships and critical features to monitor the current status of the each process. Finally, it helps an industry to raise their profit and reduce their failure cost.

  • PDF

Experimental research on the effect of water-rock interaction in filling media of fault structure

  • Faxu, Dong;Zhang, Peng;Sun, Wenbin;Zhou, Shaoliang;Kong, Lingjun
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.471-478
    • /
    • 2021
  • Water damage is one of the five disasters that affect the safety of coal mine production. The erosion of rocks by water is a very important link in the process of water inrush induced by fault activation. Through the observation and experiment of fault filling samples, according to the existing rock classification standards, fault sediments are divided into breccia, dynamic metamorphic schist and mudstone. Similar materials are developed with the characteristics of particle size distribution, cementation strength and water rationality, and then relevant tests and analyses are carried out. The experimental results show that the water-rock interaction mainly reduces the compressive strength, mechanical strength, cohesion and friction Angle of similar materials, and cracks or deformations are easy to occur under uniaxial load, which may be an important process of water inrush induced by fault activation. Mechanical experiment of similar material specimen can not only save time and cost of large scale experiment, but also master the direction and method of the experiment. The research provides a new idea for the failure process of rock structure in fault activation water inrush.

Process Planning Method under Make-to-Order Production System using Data Mining (데이터마이닝을 이용한 수주생산시스템의 공정계획방안)

  • Oh, Kyung-Mo;Park, Chang-Kwon
    • IE interfaces
    • /
    • v.18 no.2
    • /
    • pp.148-157
    • /
    • 2005
  • The manufacturing industry with Make-to-Order production system is difficult to decide the standard information for the product and the demand is variable to estimate. In this paper, we concerned with the process planning method using data mining in the manufacturing industry with Make-to-Order environment. The subject of our study is the industry transformer plant which is received an diverse order of customer and then produced the product. Currently, process planning method is classified the standard information by hand based on the acquired knowledge through the experience. The standard information stored the various information, such as work sequence, time and so on. This process planning method needs an experts which possesses the field experience for several years. For the product specification which is varied in each order, current process planning method is not efficient due to need many times To solve this problem, we extract the information using data mining process for each processing time, and then construct the knowledge base. We propose a method which is the process planning of the industry transformer product in Make-to-Order environment using the knowledge base.

A Framework for Web Log Analysis Using Process Mining Techniques (프로세스 마이닝을 이용한 웹 로그 분석 프레임워크)

  • Ahn, Yunha;Oh, Kyuhyup;Kim, Sang-Kuk;Jung, Jae-Yoon
    • Journal of Information Technology and Architecture
    • /
    • v.11 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • Web mining techniques are often used to discover useful patterns from data log generated by Web servers for the purpose of web usage analysis. Yet traditional Web mining techniques do not reflect sufficiently sequential properties of Web log data. To address such weakness, we introduce a framework for analyzing Web access log data by using process mining techniques. To illustrate the proposed framework, we show the analysis of Web access log in a campus information system based on the framework and discuss the implication of the analysis result.