• Title/Summary/Keyword: process mining

검색결과 1,061건 처리시간 0.031초

철 나노 입자가 담지된 바이오차 기반 비드 형태 안정화제를 이용한 비소 및 납 오염토양의 안정화 (Immobilization of As and Pb in Contaminated Soil Using Bead Type Amendment Prepared by Iron NanoparticlesImpregnated Biochar)

  • 최유림;김동수;강태준;양재규;장윤영
    • 환경영향평가
    • /
    • 제30권4호
    • /
    • pp.247-257
    • /
    • 2021
  • 본 연구에서는 기존 바이오차의 제한점인 비소 오염 토양 안정화에 대한 낮은 효율과 비산에 의한 유실 가능성을 개선할 수 있는 철 나노입자가 담지된 바이오차 기반 비드 형태 안정화제인 INPBC/bead (Iron Nano-Particles Impregnated BioChar/bead)를 제조하였다. 폐목재 바이오매스를 Fe(III) 용액과 함께 수열 반응을 진행하고 이후 소성을 거쳐 INPBC를 제조하였다. INPBC/bead는 알지네이트의 cross-linking 반응을 통해 제조 하였다. 제조한 INPBC/bead의 특성을 평가하기 위해 FT-IR, XRD, BET 비표 면적, SEM-EDS 분석을 실시하였다. 특성 평가 결과 입자 크기가 1-4 mm인 INPBC/bead는 여러 산소 함유 관능기를 보유하며 표면의 철 결정성은 Fe3O4인 것으로 확인되었다. INPBC/bead의 성능을 평가하기 위해 폐광산 주변 지역에서 채취한 비소 및 중금속 오염 토양을 이용하여 배양 실험을 실시하였다. 4주 동안의 배양이 종료된 후 처리된 토양을 대상으로 TCLP, SPLP 시험을 실시한 결과 안정화제 적용 비율이 증가함에 따라 안정화 효율은 높아지는 것으로 확인되었다. SPLP 시험 결과, INPBC/bead 5%의 비소 안정화 효율은 81.56%이며 납의 경우에는 농도가 검출한계 미만으로 저감되었다. 상기의 결과를 종합하였을 때 INPBC/bead는 토양 중 비소와 납에 대한 안정화 효과를 동시에 보유하고 토양의 pH 변화를 일으키지 않으며 비드 형태로써 적용 과정에서 비산되는 것이 방지할 수 있는 안정화제이기 때문에 비소 및 중금속 복합 오염 토양 안정화에 적용 가능성이 높은 안정화제 인 것으로 판단된다.

토픽 모델링을 활용한 상담 성과 연구동향 분석 - 「상담학연구」 학술지를 중심으로 (Counseling Outcomes Research Trend Analysis Using Topic Modeling - Focus on 「Korean Journal of Counseling」)

  • 박귀화;이은영;윤소정
    • 디지털융복합연구
    • /
    • 제19권11호
    • /
    • pp.517-523
    • /
    • 2021
  • 상담의 성과는 상담자와 연구자 모두에게 중요하다. 지금까지 진행되어온 상담의 성과에 대한 연구의 동향을 분석하는 것은 상담의 성과를 종합적으로 구조화하는데 도움을 준다. 본 연구의 목적은 2011~2021년에 국내 상담분야의 저명 학회지 중 하나인 「상담학연구」에 게재된 상담 성과 관련 연구를 중심으로 연구 동향을 분석하여, 국내 상담성과 연구의 지식 구조를 탐색하고 향후 연구방향을 모색하는 것이다. 텍스트 마이닝 기법 중 중심성분석과 토픽 모델링을 활용하였다. 분석에 활용된 연구는 197개로 노드 추출 과정을 거쳐 최종 339개의 키워드가 분석에 활용되었다. LDA 알고리즘을 활용하여 잠재 토픽을 추출한 결과 '상담 성과의 측정과 평가', '대인관계에 영향을 주는 정서와 매개요인', '진로에 대한 스트레스와 대처'가 주요 토픽으로 나타났다. 상담학 연구에 게재된 상담성과 연구의 동향 분석을 통해 주요 토픽을 밝힌 것은 상담성과 연구를 보다 구조화하는 데 기여하였으며, 이후에도 이러한 주제들에 대한 심층적 연구가 지속되어야 할 필요가 있다.

Sentiment Analysis of Product Reviews to Identify Deceptive Rating Information in Social Media: A SentiDeceptive Approach

  • Marwat, M. Irfan;Khan, Javed Ali;Alshehri, Dr. Mohammad Dahman;Ali, Muhammad Asghar;Hizbullah;Ali, Haider;Assam, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권3호
    • /
    • pp.830-860
    • /
    • 2022
  • [Introduction] Nowadays, many companies are shifting their businesses online due to the growing trend among customers to buy and shop online, as people prefer online purchasing products. [Problem] Users share a vast amount of information about products, making it difficult and challenging for the end-users to make certain decisions. [Motivation] Therefore, we need a mechanism to automatically analyze end-user opinions, thoughts, or feelings in the social media platform about the products that might be useful for the customers to make or change their decisions about buying or purchasing specific products. [Proposed Solution] For this purpose, we proposed an automated SentiDecpective approach, which classifies end-user reviews into negative, positive, and neutral sentiments and identifies deceptive crowd-users rating information in the social media platform to help the user in decision-making. [Methodology] For this purpose, we first collected 11781 end-users comments from the Amazon store and Flipkart web application covering distant products, such as watches, mobile, shoes, clothes, and perfumes. Next, we develop a coding guideline used as a base for the comments annotation process. We then applied the content analysis approach and existing VADER library to annotate the end-user comments in the data set with the identified codes, which results in a labelled data set used as an input to the machine learning classifiers. Finally, we applied the sentiment analysis approach to identify the end-users opinions and overcome the deceptive rating information in the social media platforms by first preprocessing the input data to remove the irrelevant (stop words, special characters, etc.) data from the dataset, employing two standard resampling approaches to balance the data set, i-e, oversampling, and under-sampling, extract different features (TF-IDF and BOW) from the textual data in the data set and then train & test the machine learning algorithms by applying a standard cross-validation approach (KFold and Shuffle Split). [Results/Outcomes] Furthermore, to support our research study, we developed an automated tool that automatically analyzes each customer feedback and displays the collective sentiments of customers about a specific product with the help of a graph, which helps customers to make certain decisions. In a nutshell, our proposed sentiments approach produces good results when identifying the customer sentiments from the online user feedbacks, i-e, obtained an average 94.01% precision, 93.69% recall, and 93.81% F-measure value for classifying positive sentiments.

사용성 및 프라이버시 개선을 위한 NFT 플랫폼 연구 (A Study on Non-Fungible Token Platform for Usability and Privacy Improvement)

  • 강명조;김미희
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권11호
    • /
    • pp.403-410
    • /
    • 2022
  • 블록체인 기반으로 생성된 NFT는 자신만의 고유한 값을 지녀 위변조가 불가하며 다른 토큰이나 코인과 교환될 수 없다. 이러한 특성을 이용해 이미지나 비디오, 예술작품, 게임 캐릭터 및 아이템 등과 같은 디지털 자산에 NFT를 발행하여 사이버상에 존재하는 수많은 사용자와 객체들 사이에서 디지털 자산의 소유권을 주장할 수 있으며, 동시에 원본 증명도 가능하다. 하지만, 2020년 초기부터 NFT에 관한 관심이 폭발하여 블록체인 네트워크에 많은 부하를 일으켰고, 이에 따라 사용자들은 연산 처리가 늦어지거나 채굴 과정에 매우 큰 수수료가 발생하는 문제점을 겪고 있다. 또한, 사용자들의 모든 행위가 블록체인 장부에 저장되고 디지털 자산은 블록체인 기반 분산 파일 저장 시스템에 저장되어 자신의 신분을 밝히고 싶지 않은 사용자의 개인정보가 불필요하게 노출될 가능성이 있다. 본 논문에서는 클라우드 컴퓨팅과 접근 게이트, 변환 테이블, 클라우드 아이디 등을 활용한 NFT 플랫폼을 제안하여 기존 시스템에서 발생하는 사용성 문제와 프라이버시 문제를 개선할 수 있도록 한다. 로컬시스템과 클라우드 시스템의 성능 비교를 위해 스마트 계약 배포 및 NFT 발행 트랜잭션 연산 처리에 사용된 가스를 측정했다. 그 결과, 클라우드 시스템이 같은 실험 환경 및 파라미터를 사용했음에도 스마트 계약 배포에는 약 3.75%, NFT 생성 트랜잭션 처리에는 약 4.6%의 가스를 절약하는 결과를 도출했고, 이를 통해 클라우드 시스템이 로컬시스템보다 효율적으로 연산을 처리할 수 있음을 확인했다.

스마트도시 구현을 위한 시민참여의 역할과 방향에 관한 연구 (Civic Participation in Smart City : A Role and Direction)

  • 남우민;박건철
    • 인터넷정보학회논문지
    • /
    • 제23권6호
    • /
    • pp.79-86
    • /
    • 2022
  • 본 연구는 스마트도시 구축과정에서 시민참여 활성화를 위한 연구동향을 파악하고자 한다. 이를 바탕으로 스마트도시에서 시민참여의 역할과 방향을 제시하고 시민참여를 유인할 수 있는 정책적·산업적·학술적·방향성을 제시하는데 있다. 전 세계적으로 급격하게 진행되는 도시화와 도시인구 증가로 교통, 환경, 에너지 등 각종사회 문제가 도시를 중심으로 확산 및 심화되고 있다. 세계 각국은 이런 도시문제 해결 및 지속가능한 발전을 이루기 위해 스마트도시를 도입하고 있다. 최근에는 인프라 확대 등 스마트도시 건설을 위한 기존의 하향식(Top-Down) 도시계획 방식에서 벗어나 시민들이 직·간접적으로 도시건설 과정에 참여 및 상호작용할 수 있는 상향식(Bottom-Up) 방식으로의 접근이 경주되고 있다. 한편, 국내에서도 국가전략관점에서 스마트도시 건설이 추진되고 있지만, 스마트도시에 대한 일반 시민의 인식과 참여는 낮은 것으로 나타나고 있다. 이런 상황을 극복하기 위해 스마트도시의 구축과정에서 시민참여를 촉진하기 위한 연구가 시급한 상황이다. 따라서 본 연구에서는 스마트도시의 구축과정에서 시민참여를 촉진하기 위한 전략모색을 위해 Scopus DB에서 'Smart City'와 'Participation(Engagement)'가 동시에 포함된 문헌 995건을 수집 후 토픽모델링 기법을 활용하여 관련 연구주제를 유형화하고, 연구동향을 분석하였다. 이를 통해 스마트도시에서 시민참여에 관한 연구방향을 이해하고, 향후 관련 연구에 대한 방향성을 제시하는 근거자료로 활용될 수 있을 것으로 기대된다.

지방자치단체의 스마트시티 조례 분석: 토픽모델링을 활용하여 (Analysis of Municipal Ordinances for Smart Cities of Municipal Governments: Using Topic Modeling)

  • 서형준
    • 정보화정책
    • /
    • 제30권1호
    • /
    • pp.41-66
    • /
    • 2023
  • 본 연구는 72개 지자체의 74개 스마트시티 조례를 대상으로, 지자체 스마트시티 조례의 방향성을 확인하고자 토픽모델링을 활용하여 조례의 주요 키워드를 확인하고, 조례의 키워드에 따른 주제분류를 진행하였다. 분석결과 주요 키워드는 스마트도시위원회의 구성 및 운영에 관한 키워드가 조례 내에서 높은 빈도를 보였다. 조례에 대한 토픽모델링 Latent Dirichlet Allocation(LDA) 분석결과 관련 키워드에 따라 총 8개의 주제로 분류할 수 있었다. 구체적으로 주제-1(스마트시티 추진사항 보안), 주제-2(스마트시티 산업진흥), 주제-3(스마트시티 주민협의체 구성), 주제-4(스마트시티 추진체계 지원), 주제-5(개인정보 관리), 주제-6(스마트시티 데이터 활용), 주제-7(지능정보화 행정구현), 주제-8(스마트시티 홍보) 등으로, 주제의 비중은 주제-6, 주제-4, 주제-1 등의 순으로 나타났다. 권역별 주제분류는 수도권은 주제-5, 주제-6, 주제-8 의 비중이 높았고, 지방권은 주제-2, 주제-3, 주제-4의 비중이 높아 수도권은 스마트시티의 실질 운영 관련 주제가 높았고, 지방권은 스마트시티 추진을 위한 준비단계 관련 주제 비중이 높았다.

CNN 딥러닝을 활용한 경관 이미지 분석 방법 평가 - 힐링장소를 대상으로 - (Assessment of Visual Landscape Image Analysis Method Using CNN Deep Learning - Focused on Healing Place -)

  • 성정한;이경진
    • 한국조경학회지
    • /
    • 제51권3호
    • /
    • pp.166-178
    • /
    • 2023
  • 본 연구는 이용자들의 인식과 경험이 내재된 소셜미디어 사진에서 경관 이미지를 분석하기 위한 방법으로 CNN 딥러닝 방법을 소개하고 평가하는 데 그 목적이 있다. 본 연구에서는 힐링장소를 연구의 대상으로 설정하여 경관 이미지를 분석하였다. 연구를 위해 텍스트마이닝과 선행연구 고찰을 통해 힐링과 관련되는 7가지의 경관 형용사를 선정하였다. 이후 CNN 딥러닝 학습 사진 구축을 위해 50명의 평가자를 모집하였으며, 평가자들에게 포털사이트에서 '힐링', '힐링풍경', '힐링장소'로 검색되는 사진 중 7가지 형용사마다 가장 적합한 사진을 3장씩 수집하도록 하였다. 수집된 사진을 정제 및 데이터 증강 과정을 거쳐 CNN 모델을 제작하였다. 이후 힐링장소 경관 분석을 위해 포털사이트에서 '힐링'과 '힐링풍경'으로 검색되는 15,097장의 사진을 수집하여 이를 분류하였다. 연구결과 '기타'와 '실내'를 제외한 범주에서 '조용한'이 2,093장(22%)으로 가장 높게 나타났으며, '개방적인', '즐거운', '안락한', '깨끗한', '자연적인', '아름다운' 순으로 나타났다. CNN 딥러닝은 경관 이미지 분석에서도 결과를 도출 가능한 분석 방법임을 연구를 통해 알 수 있었다. 또한, 기존 경관 분석 방법을 보완할 수 있는 하나의 방법임을 시사하였고, 경관 이미지 학습 데이터 셋 구축을 통한 향후 심층적이고 다양한 경관 분석을 제안한다.

국내 스마트 항만 도입 우선순위 도출 연구 (A Study on Determining the Priority of Introducing Smart Ports in Korea)

  • 류원형;남형식
    • 한국항만경제학회지
    • /
    • 제40권1호
    • /
    • pp.31-59
    • /
    • 2024
  • 2016년 6월 세계경제포럼인 다보스 포럼에서 4차산업혁명이라는 용어가 처음 사용되어 전 세계적으로 이슈화되었고, 이에 따라 항만산업도 다양한 4차산업혁명 기술을 도입하면서 스마트 항만의 중요성이 증대되고 있다. 현재 세계 주요국들은 해운·항만산업에서 디지털 전환을 실현하기 위해 종합적인 스마트 항만을 구축하고 있지만, 국내 항만의 스마트화는 현재 부산과 인천, 광양 등 일부 지역에 항만 자동화로 국한되어 추진하고 있다. 이에 따라 본 연구는 국내 스마트 항만 도입의 우선순위를 도출하기 위해 키워드 분석을 수행하여 스마트 항만의 주요 항목들을 도출하고, 이를 바탕으로 이해관계자별 AHP 분석을 수행하였다. 분석 결과, 주요 항목의 경우 대학은 자동화, 지능화, 정보화, 친환경화 순으로 나타났고, 연구소(원)는 정보화, 지능화, 자동화, 친환경화 순으로 나타났다. 정부 기관은 정보화, 자동화, 지능화, 친환경화 순으로 나타났고, 민간기업은 자동화, 지능화, 정보화, 친환경화 순으로 나타났다. 다음으로 세부 항목의 경우 대학은 야드 무인 및 자동화, 안벽 무인 및 자동화, 통합 운영 시스템 개발 등의 순으로, 연구소(원)는 통합 운영시스템 개발, 장비/기기 간 상호연계, 야드 무인 및 자동화 등의 순으로, 정부 기관은 사고방지 및 안전성 강화, 친환경 에너지 체제 전환, 통합 운영시스템 개발 등의 순으로, 민간기업은 안벽 무인 및 자동화, 야드 무인 및 자동화, 사고방지 및 안전성 강화 등의 순으로 나타났다.

사용자 리뷰의 평가기준 별 이슈 식별 방법론: 호텔 리뷰 사이트를 중심으로 (Methodology for Identifying Issues of User Reviews from the Perspective of Evaluation Criteria: Focus on a Hotel Information Site)

  • 변성호;이동훈;김남규
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.23-43
    • /
    • 2016
  • 최근 IT기술의 발전에 따라 많은 사람들이 자신들의 여가활동에 대한 경험을 공유하고 있으며, 역으로 다른 사람들의 여가활동에 대한 경험을 참고하여 더 나은 여가활동을 누릴 수 있는 기회를 얻게 되었다. 이러한 현상은 영화, 숙박, 음식, 여행 등 여가활동 전반에 걸쳐 나타나고 있으며, 그 중심에는 여가활동에 대한 정보를 요약하여 제공하는 수많은 사이트가 있다. 대부분의 여가활동 정보 사이트는 각 상품에 대한 평균 평점뿐만 아니라 상세 리뷰를 제공함으로써, 해당 상품을 구매하고자 하는 잠재고객의 의사결정을 지원하고 있다. 하지만 기존 대부분의 사이트는 한 단계의 평가기준에 따라 평점과 리뷰를 제공하기 때문에, 각 평가기준을 구성하는 세부요소에 대한 특징과 평가기준 별 주요 이슈를 파악하기 위해서는 상당히 많은 수의 리뷰를 직접 읽어야 한다는 불편이 따른다. 즉 사용자는 자신이 중요한 것으로 생각하는 평가기준에 대한 조건을 파악하기 위해, 많은 수의 리뷰를 하나하나 읽어보는 과정에서 많은 시간과 노력을 소비하게 된다. 예를 들어 호텔의 접근성, 객실, 서비스, 음식 등 한 단계의 평가기준만을 사용하여 평점과 리뷰를 제공하는 사이트의 경우, 접근성 중 특히 지하철역과의 거리, 객실 중 특히 욕실의 상태를 살펴보고자 하는 사용자에게 필요한 정보를 충분히 제공하지 못하게 된다. 따라서 본 연구에서는 기존 여가활동 정보 사이트의 한계, 즉 평가기준별로 입력된 리뷰를 신뢰하기 어렵다는 점과 평가기준을 구성하고 있는 세부 내용을 파악하기 어렵다는 점을 극복하기 위한 방안을 제시하고자 한다. 본 연구에서 제안하는 방법론은 사용자가 별도의 구분 없이 입력한 리뷰를 그 내용에 따라 평가기준별로 자동 분류하고, 각 평가 기준 별 주요 이슈를 요약하여 제공한다. 제안 방법론은 최근 텍스트 분석에 활발하게 사용되고 있는 토픽 모델링(Topic Modeling)에 기반을 두고 있으며, 각 리뷰를 하나의 문서 단위로 사용하는 것이 아니라 리뷰를 문장 단위로 끊어 개별 리뷰 유닛(Review Unit)으로 분해한 뒤, 평가기준별로 리뷰 유닛을 재구성하여 분석한다는 측면에서 기존의 토픽 모델링 기반 연구와 큰 차이가 있다고 할 수 있다. 본 논문에서는 제안 방법론을 실제 호텔 정보 사이트에서 수집한 423건의 리뷰 문서에 적용하여 6가지 평가기준에 대해 총 4,860건의 리뷰 유닛을 재구성하고, 이에 대한 분석 결과를 소개함으로써 제안 방법론의 유용성을 간접적으로 보인다.

완전성과 간결성을 고려한 텍스트 요약 품질의 자동 평가 기법 (Automatic Quality Evaluation with Completeness and Succinctness for Text Summarization)

  • 고은정;김남규
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.125-148
    • /
    • 2018
  • 다양한 스마트 기기 및 관련 서비스의 증가에 따라 텍스트 데이터가 폭발적으로 증가하고 있으며, 이로 인해 방대한 문서로부터 필요한 정보만을 추려내는 작업은 더욱 어려워졌다. 따라서 텍스트 데이터로부터 핵심 내용을 자동으로 요약하여 제공할 수 있는 텍스트 자동 요약 기술이 최근 더욱 주목을 받고 있다. 텍스트 요약 기술은 뉴스 요약 서비스, 개인정보 약관 요약 서비스 등을 통해 현업에서도 이미 활발하게 적용되고 있으며, 학계에서도 문서의 주요 요소를 선별하여 제공하는 추출(Extraction) 접근법과 문서의 요소를 발췌한 뒤 이를 조합하여 새로운 문장을 구성하는 생성(Abstraction) 접근법에 따라 많은 연구가 이루어지고 있다. 하지만 문서의 자동 요약 기술에 비해, 자동으로 요약된 문서의 품질을 평가하는 기술은 상대적으로 많은 진전을 이루지 못하였다. 요약문의 품질 평가를 다룬 기존의 대부분의 연구들은 사람이 수작업으로 요약문을 작성하여 이를 기준 문서(Reference Document)로 삼고, 자동 요약문과 기준 문서와의 유사도를 측정하는 방식으로 수행되었다. 하지만 이러한 방식은 기준 문서의 작성 과정에 막대한 시간과 비용이 소요될 뿐 아니라 요약자의 주관에 의해 평가 결과가 다르게 나타날 수 있다는 한계를 갖는다. 한편 이러한 한계를 극복하기 위한 연구도 일부 수행되었는데, 대표적으로 전문에 대해 차원 축소를 수행하고 이렇게 축소된 전문과 자동 요약문의 유사도를 측정하는 기법이 최근 고안된 바 있다. 이 방식은 원문에서 출현 빈도가 높은 어휘가 요약문에 많이 나타날수록 해당 요약문의 품질이 우수한 것으로 평가하게 된다. 하지만 요약이란 본질적으로 많은 내용을 줄여서 표현하면서도 내용의 누락을 최소화하는 것을 의미하므로, 단순히 빈도수에 기반한 "좋은 요약"이 항상 본질적 의미에서의 "좋은 요약"을 의미한다고 보는 것은 무리가 있다. 요약문 품질 평가의 이러한 기존 연구의 한계를 극복하기 위해, 본 연구에서는 요약의 본질에 기반한 자동 품질 평가 방안을 제안한다. 구체적으로 요약문의 문장 중 서로 중복되는 내용이 얼마나 적은지를 나타내는 요소로 간결성(Succinctness) 개념을 정의하고, 원문의 내용 중 요약문에 포함되지 않은 내용이 얼마나 적은지를 나타내는 요소로 완전성(Completeness)을 정의한다. 본 연구에서는 간결성과 완전성의 개념을 적용한 요약문 품질 자동 평가 방법론을 제안하고, 이를 TripAdvisor 사이트 호텔 리뷰의 요약 및 평가에 적용한 실험 결과를 소개한다.