• Title/Summary/Keyword: process in the loop simulation

Search Result 208, Processing Time 0.031 seconds

A New Efficient Group-wise Spatial Multiplexing Design for Closed-Loop MIMO Systems (폐루프 다중입출력 시스템을 위한 효율적인 그룹별 공간 다중화 기법 설계)

  • Moon, Sung-Myun;Lee, Heun-Chul;Kim, Young-Tae;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.322-331
    • /
    • 2010
  • This paper introduces a new efficient design scheme for spatial multiplexing (SM) systems over closed loop multiple-input multiple-output (MIMO) wireless channels. Extending the orthogonalized spatial multiplexing (OSM) scheme which was developed recently for transmitting two data streams, we propose a new SM scheme where a larger number of data streams can be supported. To achieve this goal, we partition the data streams into several subblocks and execute the block-diagonalization process at the receiver. The proposed scheme still guarantees single-symbol maximum likelihood (ML) detection with small feedback information. Simulation results verify that the proposed scheme achieves a huge performance gain at a bit error rate (BER) of $10^{-4}$ over conventional closed-loop schemes based on minimum mean-square error (MSE) or bit error rate (BER) criterion. We also show that an additional 2.5dB gain can be obtained by optimizing the group selection with extra feedback information.

Control Valve Positioner and Its effect on a Gas Turbine MW Control (공정제어루프 최종 조작부의 동작특성에 관한 연구)

  • Kim, Jong-An;Shin, Yoon-Oh
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.728-730
    • /
    • 1998
  • The control valve positioner is a high gain plain proportional controller which measures the valve stem position and compares it to its setpoint which is the primary controller output. The positioner in effect is the cascade slave of the primary controller. In order for a cascade slave to be effecttive, it must be fast enough compared to the speed of its set point change. This paper describes the positioner transfer function and its effect on the entire control loop characteristic based on the simulation results. The result showed that the control valve and positioner determined the gain and phase angle in the high frequency range, while the primary controller and process determined those of the low frequency range. We can also anticipate the combined characteristics in the whole frequency range when each element's frequency response is known.

  • PDF

Dynamic Walking Planning for a Legged Moving Machine (보행형 이동 로봇의 동적 걸음 계획)

  • Yu S.H.;Kim J.H.;Kim Y.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1780-1783
    • /
    • 2005
  • In this paper ZMP was considered in order to get a walking stability, so the gait in the stable domain was realized through putting the stability margin in the sole domain of a foot. It is assumed that the robot's legs have 12 joints to operate a open-loop drive and there was no external disturbance under walking phases, additionally, the robot is walking on the flat plane. It was observed that the robot's walking trajectory, locus of COM and ZMP after imposing the motion to each joint. For realizing the simulation considering ZMP and movement of mass center, it was checked if it is stable for the constraint robot model to walk in stability and the feasibility was estimated about its dynamic gait. Eventually it was shown that a constraint gait algorithm is able to realize. To verify the proper walking process, ZMP(Zero Moment Point) theory is applied and the simulation has been done by ADAMS.

  • PDF

Neural network based direct torque control for doubly fed induction generator fed wind energy systems

  • Aftab Ahmed Ansari;Giribabu Dyanamina
    • Advances in Computational Design
    • /
    • v.8 no.3
    • /
    • pp.237-253
    • /
    • 2023
  • Torque ripple content and variable switching frequency operation of conventional direct torque control (DTC) are reduced by the integration of space vector modulation (SVM) into DTC. Integration of space vector modulation to conventional direct torque control known as SVM-DTC. It had been more frequently used method in renewable energy and machine drive systems. In this paper, SVM-DTC is used to control the rotor side converter (RSC) of a wind driven doubly-fed induction generator (DFIG) because of its advantages such as reduction of torque ripples and constant switching frequency operation. However, flux and torque ripples are still dominant due to distorted current waveforms at different operations of the wind turbine. Therefore, to smoothen the torque profile a Neural Network Controller (NNC) based SVM-DTC has been proposed by replacing the PI controller in the speed control loop of the wind turbine controller. Also, stability analysis and simulation study of DFIG using process reaction curve method (RRCM) are presented. Validation of simulation study in MATLAB/SIMULINK environment of proposed wind driven DFIG system has been performed by laboratory developed prototype model. The proposed NNC based SVM-DTC yields superior torque response and ripple reduction compared to other methods.

Active Control of Road-Booming-Noise with Constraint Multiple Filtered-X LMS Algorithm

  • Oh, Shi-Hwan;Kim, Hyoun-Suk;Park, Young-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.2E
    • /
    • pp.3-7
    • /
    • 2000
  • Vibration generated by the non-uniform road profile propagates though each tire and the suspension and finally generates structure born noise in the interior of the passenger vehicle. In this paper, the road-booming-noise which has strong correlation with the vibration signals measured at the suspension system was compensated. Active noise control of the road-booming-noise is rather difficult to achieve because of its non-stationary characteristics. CMFX LMS (Constraint Multiple Filtered-X Least Mean Square) algorithm, which can track non-stationary process rather well, is applied. Comprison of the proposed method and the conventional MFX LMS (Multiple Filtered-X Least Mean Square) algorithm is made through the hardware-in-the-loop simulation and the feasibility of the proposed method is demonstrated with the experiment.

  • PDF

Contour machining error in NC milling process

  • Namkoong, Chikwan;Yellowely, I.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.116-125
    • /
    • 2001
  • The comprehensive system analysis for contour milling operation has performed in this study, which combined the each element with proper connectivity into closed loop system, and determined the system response by numerical simulation technique. The obtained simulated results were then compared with the experimental results from the practical points of view, and so forth, the governing equations were formulated into the estimation model, which predicted the total contour machining error within 25% accuracy. Through the procedural evaluation, it could ascertain the characteristics of generation mechan- ifs in circular contour machining error, and the weight of each factor.

  • PDF

Design of an Adaptive Fuzzy Logic Controller using Sliding Mode Scheme

  • Kwak, Seong-Woo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.6
    • /
    • pp.577-582
    • /
    • 1999
  • Using a sole input variable simplifies the design process for the fuzzy logic controller(FLC). This is called single-input fuzzy logic controller(SFLC). However it is still deficient in the capability of adapting to the varying operating conditions. We here design a single-input adaptive fuzzy logic controller(AFLC) using a switching function of the sliding mode control. The AFLC can directly incorporate linguistic fuzzy control rules into the controller. Hence some parameters of the membership functions characterizing the linguistic terms of the fuzzy rules can be adjusted by an adaptive law. In the proposed AFLC center values of fuzzy sets are directly adjusted by a fuzzy logic system. We prove that 1) its closed-loop system is globally stable in the sense that all signals involved are bounded and 2)its tracking error converges to zero asymptotically. We perform computer simulation using a nonlinear plant.

  • PDF

A Study on the Application of System dynamics for Market Strategy : In The Local Government Server Market (시장전략 수립을 위한 시스템 다이내믹스의 적용)

  • 박상현;연승준;김상욱
    • Korean System Dynamics Review
    • /
    • v.3 no.2
    • /
    • pp.29-48
    • /
    • 2002
  • Most of companies have analyzed markets continually and founded market strategies based on these analyses to gain competitive advantage. But sometimes some mistaken market analyses make the strategic decision-making of companies bring unexpected results. This because many companies just research or consider only the present condition, so they can't reflect dynamic change and the delayed feedback effect and then found the market strategy in the short-term angle rather than analyze the structural features of market on the whole. For that reason, this paper will describe how effective system thinking and system dynamics are as they found strategy of company for solving the problems and trying to find better alternative proposal by explaining process of founding market strategy with a casual loop diagram and a simulation model in the local government server market.

  • PDF

A Fuel Cell Simulator for Control Logic Verification and Operator Training (제어로직 검증 및 운전원 훈련용 연료전지 시뮬레이터)

  • Maeng, Jwayoung;Kim, Sungho;Jung, Wonhee;Kang, Seungyup;Hong, Sukkyu;Lee, Sekyoung;Yook, Simkyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.75.1-75.1
    • /
    • 2010
  • This research presents a fuel cell simulator for control logic verification and operator training. Nowadays, power industries are focusing on clean energy as a response to new policy. The fuel cell can be the solution for clean energy, but operating technology is not well developed compared to other conventional power plans because of its short history. Therefore we need a simulator to verify the new control strategy and train operators, because the price of a real fuel cell system is too high and mechanically weak to be used for these kind of purposes. To develop the simulator, a 300 KW MCFC(Molten Carbonate Fuel Cell) system was modeled with stack, BOPs(pre-reformer, steam generator, etc) and mechanical components(valves, pipes, pumps, blowers, etc). The process model was integrated to emulated control system and HMI(Human Machine Interface). A static load and open loop tests were conducted for verifying the accuracy of the process model, since it is the most important part in the simulation. After verifying the process model, an automatic load change and start-up tests were conducted to verify the performance of a new control strategy(logic and functional loops).

  • PDF

The Construction and Viterbi Decoding of New (2k, k, l) Convolutional Codes

  • Peng, Wanquan;Zhang, Chengchang
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.69-80
    • /
    • 2014
  • The free distance of (n, k, l) convolutional codes has some connection with the memory length, which depends on not only l but also on k. To efficiently obtain a large memory length, we have constructed a new class of (2k, k, l) convolutional codes by (2k, k) block codes and (2, 1, l) convolutional codes, and its encoder and generation function are also given in this paper. With the help of some matrix modules, we designed a single structure Viterbi decoder with a parallel capability, obtained a unified and efficient decoding model for (2k, k, l) convolutional codes, and then give a description of the decoding process in detail. By observing the survivor path memory in a matrix viewer, and testing the role of the max module, we implemented a simulation with (2k, k, l) convolutional codes. The results show that many of them are better than conventional (2, 1, l) convolutional codes.