• Title/Summary/Keyword: procaspase-8

Search Result 31, Processing Time 0.025 seconds

In vitro Activation of Procaspase-8 by Forming the Cytoplasmic Component of the Death-inducing Signaling Complex (cDISC)

  • Roy, Ankoor;Hong, Jong hui;Lee, Jin-Hee;Lee, Young-Tae;Lee, Bong-Jin;Kim, Key-Sun
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.165-170
    • /
    • 2008
  • Procaspase-8 is activated by forming a death-inducing signaling complex (DISC) with the Fas-associated death domain (FADD) and the Fas receptor, but the mechanism of its activation is not well understood. Procaspase-8 devoid of the death effector domain at its N-terminus (${\Delta}nprocaspase-8$) was reported to be activated by kosmotropic salts, but it has not been induced to form a DISC in vitro because it cannot interact with FADD. Here, we report the production of full-length procaspase-8 and show that it is activated by adding the Fas death domain (Fas-DD) and the FADD forming the cytoplasmic part of the DISC (cDISC). Furthermore, mutations known to affect DISC formation in vivo were shown to have the same effect on procaspase-8 activation in vitro. An antibody that induces Fas-DD association enhanced procaspase-8 activation, suggesting that the Fas ligand is not required for low-level activation of procaspase-8, but that Fas receptor clustering is needed for high-level activation of procaspase-8 leading to cell death. In vitro activation of procaspase-8 by forming a cDISC will be invaluable for investigating activation of ligand-mediated apoptosis and the numerous interactions affecting procaspase-8 activation.

Structural and Functional Roles of Caspase-8 in Extrinsic Apoptosis (Apoptosis의 외인성 경로에서 caspase-8의 구조적 및 기능적 역할)

  • Ha, Min Seon;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Life Science
    • /
    • v.31 no.10
    • /
    • pp.954-959
    • /
    • 2021
  • Apoptosis is an important mechanism that regulates cellular populations to maintain homeostasis, and the caspases, a family of cysteine proteases, are key mediators of the apoptosis pathway. Caspase-8 is an initiator caspase of the extrinsic apoptotic pathway, which is initiated by extracellular stimuli. Caspase-8 have two conserved domains, N-terminal tandem death effector domains (DED) and C-terminal two catalytic domain, which are important for this extrinsic apoptosis pathway. In extrinsic apoptosis pathway, death receptors which members of TNF superfamily are activated by binding of death receptor specific ligands from cell outside. After the activated death receptors recruit adaptor protein Fas-associated death domain protein (FADD), death domains (DD) of death receptor and FADD bind to each other and FADD combined with death receptor recruits procaspase-8, a precursor form of caspase-8. The DED of FADD and procaspase-8 bind to one another and FADD-bound procaspase-8 is activated by cleavage of the prodomain. This death receptor-FADD-caspase-8 complex called death inducing signaling complex (DISC). Cellular FLICE-inhibitory proteins (c-FLIPs) regulate caspase-8 activation by acting both anti- and pro-apoptotically, and caspase-8 activation initiates the activation of executioner caspases such as caspase-3. Finally activated executioner caspases complete the apoptosis by acting critically DNA degradation, nuclear condensation, plasma membrane blebbing, and the proteolysis of certain caspase substrates.

A Correlative Study on Aβ and CD95 Pathway Independent to Ca2+ Dependent Protease and Activation of Caspase Activation

  • Tuyet, Pham Thi Dieu
    • Journal of Integrative Natural Science
    • /
    • v.7 no.1
    • /
    • pp.25-38
    • /
    • 2014
  • Amyloid-${\beta}$-peptide ($A{\beta}$) is important in the pathogenesis of Alzheimer's disease (AD). Calpain ($Ca^{2+}$-dependent protease) and caspase-8 (the initiating caspase for the extrinsic, receptor-mediated apoptosis pathway) have been implicated in $AD/A{\beta}$ toxicity. We found that $A{\beta}$ promoted degradation of calpastatin (the specific endogenous calpain inhibitor); calpastatin degradation was prevented by inhibitors of either calpain or caspase-8. The results implied a cross-talk between the two proteases and suggested that one protease was responsible for the activity of the other one. In neuron-like differentiated PC12 cells, calpain promotes active caspase-8 formation from procaspase-8 via the $A{\beta}$ and CD95 pathways, along with degradation of the procaspase-8 processing inhibitor caspase-8 (FLICE)-like inhibitory protein, short isoform (FLIPS). Inhibition of calpain (by pharmacological inhibitors and by overexpression of calpastatin) prevents the cleavage of procaspase-8 to mature, active caspase-8, and inhibits FLIPS degradation in the $A{\beta}$-treated and CD95-triggered cells. Increased cellular Ca2+ per se results in calpain activation but does not lead to caspase-8 activation or FLIPS degradation. The results suggest that procaspase-8 and FLIPS association with cell membrane receptor complexes is required for calpain-induced caspase-8 activation. The results presented here add to the understanding of the roles of calpain, caspase- 8, and CD95 pathway in $AD/A{\beta}$ toxicity. Calpain-promoted activation of caspase-8 may have implications for other types of CD95-induced cell damage, and for nonapoptotic functions of caspase-8. Inhibition of calpain may be useful for modulating certain caspase-8-dependent processes.

Imyosan induces caspases-mediated apoptosis in human colorectal cancer HCT116 cells (이묘산(二妙散)에 의한 대장암 세포주 HCT116의 Caspases 활성화를 매개로 한 세포사멸)

  • Kim, Sun-Mo;Yun, Hyun-Jeung;Lee, Hyun-Woo;Kim, Pan-Jun;Lee, Chang-Hyun;Park, Won-Hwan;Park, Sun-Dong
    • Herbal Formula Science
    • /
    • v.14 no.2
    • /
    • pp.21-32
    • /
    • 2006
  • The purpose of this study was to investigate the effect of Imyosan on apoptosis in human colorectal cancer HCT116 cells. Phellodendron amurense Rupr. and Atratylodes lancea D.C. compose Imyosan. First of all, to study the cytotoxic effect of methanol extract of Imyosan (IMS-MeOH) on HCT116 cells, the cells were treated with various concentrations of IMS-MeOH and then cell viability was determined by XTT reduction method. IMS-MeOH reduced viability of HCT116 cells in a dose and time-dependent manner. To confirm the induction of apoptosis, the c1eavage of poly ADP-ribose polymerase (PARP), a substrate for caspase-3 and a typical sign of apoptosis, and the activation of caspase-3, procaspase-8 and procaspase-9 were examined by western blot analysis. IMS-MeOH decreased procaspase-3, procaspase-8 and procaspase-9 levels in a dose-dependent manner and induced the clevage of PARP. IMS-MeOH triggered the mitochondrial apoptotic signaling by increasing the release of cytochrome c from mitochondria to cytosol. Furthermore, IMS-MeOH also downregulated the anti-apoptotic Bcl-2 and upregulated the pro-apoptotic-Bax. Therefore, these results suggest that IMS-MeOH induced HCT1l6 cell death through the mitochondrial pathway. To explore whether the activities of caspases was required for induction of apoptosis by IMS-MeOH, caspase-3, -8, -9 activity measured by using substrates, respectively. IMS-MeOH increased caspase-3, -8, -9 activity. Co-treatment with inhibitors of caspase-3, -8, -9 and IMS-MeOH significantly blocked IMS-MeOH-triggered apoptosis in HCT1l6 cells. These results suggest that IMS-MeOH induces caspases-mediated apoptosis.

  • PDF

Effect of Yong-dam-sa-gan-tang on apoptosis in human hepatoma HepG2 (용담사간탕(龍膽瀉肝湯)에 의해 유도된 MAP kinases 활성화를 통한 간암 세포주 HepG2의 세포사멸)

  • Yun, Hyun-Jeong;Kim, Han-Seong;Heo, Sook-Kyoung;Hwang, Seong-Goo;Park, Won-Hwan;Park, Sun-Dong
    • Herbal Formula Science
    • /
    • v.15 no.2
    • /
    • pp.127-137
    • /
    • 2007
  • The purpose of this study was to investigate the effect of Yong-dam-sa-gan-tang (YST) on apoptosis in HepG2 cells, First of all. to study the cytotoxic effect of methanol extract of YST on HepG2 cells, the cells were treated with various concentrations of YST and then cell viability was determined by XTT reduction method and trypan blue exclusion assay. YST reduced proliferation of HepG2 cells in a dose-dependent manner. To confirm the induction of apoptosis, HepG2 cells were treated with various concentrations of YST. The cleavage of poly AD P-ribose polymerase (P ARP), a substrate for caspase-3 and a typical sign of apoptosis, and the activation of caspase-3, procaspase-8 and procaspase-8 were examined by western blot analysis. YST decreased procaspase-3, procaspase-8 and procaspase-9 levels in a dose-dependent manner and induced the clevage of PARP. YST triggered the mitochondrial apoptotic signaling by increasing the release of cytochrome c from mitochondria to cytosol. Furthermore, YST also downregulated the anti-apoptotic Bcl-2 and upregulated the pro-apoptotic-Bax. Therefore, this result suggest that YST induced HepG2 cell death through the mitochondrial pathway. Sustained activation of the Ras/Raf/MEK/ERK cascade in cells results in a cell cycle arrest and has been implicated in the differentiation of certain cell types, in many cases acting to promote differentiation. YST decreased the activation of Ras/Raf/MEK/ERK cascade in a dose-dependent manner. These results suggest that YST is potentially useful as a chemo-therapeutic agent in HepG2.

  • PDF

Induction of Spontaneous Neutrophil Apoptosis by 4-O-Methyl-Ascochlorin, A Prenyl Phenol Compound (프레닐 페놀계 항생제인 4-O-methyl-ascochlorin에 의한 호중구 세포사멸의 유도)

  • Son Dong-Aoon;Lee Sun-Young;Lee Min-Jung;Park Joo-In;Hong Young-Seob;Lee Yong-Hwan;Chang Young-Chae;Kwak Jong-Young
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.30-36
    • /
    • 2006
  • Neutrophils are short-lived leukocytes that play a vital role in immune responses to bacteria, yeast, and fungi. This study was performed to investigate the effect of 4-O-methyl-ascochlorin (MAC), an anti-tumor, antibiotic, and anti-fungal prenyl-phenol compound on the spontaneous apoptosis of human neutrophils. MAC time- and dose-dependently accelerated the spontaneous apoptosis of human neutrophils. The effect of MAC on neutrophil apoptosis was blocked by pre-treatment of the neutrophils with specific inhibitors of pancaspase (zVAD-fmk), caspase-8 (zIETD-fmk), or caspase-3 (zDEVD-fmk). The cleavage of procaspase-8 and procaspase-3 was increased by MAC. Mitochondrial permeability, which was measured by the retention of $DiOC_6(3)$, was dose-de-pendently increased by MAC but the change of mitochondrial permeability was not blocked by pretreatment of neutrophils with zIETD-fmk. These results suggest that MAC induces neutrophil apoptosis by caspase-8-dependent but mitochondria-independent manner.

Effect of ethyl acetate layer of Prunellae Spica on the induction of apoptosis in U937 cells (하고초 ethyl acetate분획의 U937세포에 대한 세포고사 유도효과)

  • Lee Eun Ok;Kim Sung Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.293-296
    • /
    • 2003
  • Prunellae Spica is a flower petal of Prunella vulgaris var. lilacina used for treatment of lymphoma, breast cancer, hepatitis and pathological fluid related diseases in oriental medicine. We tried to evaluate the mechanism of Prunellae Spica in the treatment of cancer. The ethyl acetate layer of Prunellae Spica showed a good cytotoxicity on U937 cells with IC50 of 8 ug/ml. It induced apoptosis in U937 dose-dependently by cell cycle analysis following PI staining. We also confirmed it induced DNA fragmentation in U937 cells from the concentration of 10 ug/ml. From western blot assay we observed the ethyl acetate layer of Prunellae Spica downregulated procaspase-3 and cleaved PARP in a dose dependent manner, whereas it didn't affect bax and bcl-2. Taken together, these results indicate the ethyl acetate layer of Prunellae Spica can induce apoptosis in U937 cells suggesting it can be potently applied to cancer.

Apoptosis-inducing Effects of Radix Aconiti Extract in HL-60 Cells (혈액암 세포에서 부자(附子) 추출물의 Apoptosis 유도 효과)

  • Kwon, Kang-Beom;Kim, Eun-Kyung;Moon, Hyung-Cheal;Jeong, Taek-Sang;Song, Yung-Sun;Ryu, Do-Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.677-683
    • /
    • 2005
  • The aim of this study was to investigate the apoptotic effect and its mechanism on Radix Aconiti (RA) extract in HL-60 human leukemia cell line. RA extract induced apoptosis as confirmed by discontinuous fragmentation of DNA. To clarify the mechanisms on RA extract-induced apoptosis, we examined the caspase-3, -8 enzyme activity and protein levels including Fas, FasL in HL-60 cells. Treatment with RA extracts resulted in the increase of caspase-3 enzyme activity in a time and dose-dependent manners, which was accompanied by the cleavage of poly-(ADP-ribose) polymerase (PARP). This activation of caspase-3 enzyme resulted from cleavage of procaspase-8, which was followed by increases of FasL, Fas protein expression in RA extracts-treated HL-60 cells. In conclusion, RA extract induced apoptosis of HL-60 human leukemia cell line. This results suggest that the apoptotic mechanisms of RA extract on HL-60 cells involved in FasL, Fas activation, procaspase-8 cleavage, activation of caspase-3 and cleavage of PARP. Collectively, these results suggest that RA may be a valuable agent as a anti-cancer drug.

A ginseng saponin metabolite-induced apoptosis in HepG2 cells involves a mitochondria-mediated pathway and its downstream caspase-8 activation and Bid cleavage

  • Hee, Oh-Seon;Lee, Bang-Wool;Quan, Yin-Hu;Kim, Hyun-Mi;Lee, Byung-Hoon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.107.1-107.1
    • /
    • 2003
  • 20-O-(${\beta}$-D-Glucopyranosyl)-20(S)-protopanaxadiol (IH901), an intestinal bacterial metabolite of ginseng saponins formed from ginsenosides Rb1, Rb2 and Rc, is suggested to be a potential chemopreventive agent. Here we show that IH901 induces apoptosis in human hepatoblastoma HepG2 cells. IH901 led to an early activation of procaspase-3 (6 h posttreatment), and the activation of caspase-8 became evident only later (18 h posttreatment). Caspase activation was a necessary requirement for apoptosis because caspase inhibitors significantly inhibited cell death by IH901. (omitted)

  • PDF

Cyanate Induces Apoptosis of Rat Glioma Cell Line (시안산에 의한 신경아교종세포의 자멸사)

  • Choi, Hye-Jung;Lee, Sang-Hee
    • Journal of Life Science
    • /
    • v.27 no.3
    • /
    • pp.267-274
    • /
    • 2017
  • The patient with end-stage renal disease show several nervous complications. The factors contributing to the nervous complications are still incompletely characterized. Cyanate, known as one of the uremic toxins, is derived spontaneously from urea. To investigate the mechanism of cyanate-induced effect on C6 glioma cells, the glioma cells were treated with 0, 1, 5, 10, 20 and 40 mM cyanate. There was a dose-dependent decrease in cell viability and the decreased number of cell was observed in glioma cells by treatment with cyanate. Western blot showed the down- regulation of procaspase-3, which means up-regulation of caspase-3, and the up-regulation of caspase-8, but the down-regulation by cyanate. In addition, cDNA microarray showed 934 down-regulated genes and 165 up-regulated genes on 1,099 genes in cyanate treated group. Treatment with cyanate led to 16 down-regulated genes and 6 up-regulated genes on apoptosis category, and especially heat shock 70 kD protein 1A gene on the category of apoptosis was significantly up-regulated. These results suggest that cyanate can induce apoptosis through caspase-8 and caspase-3 in glioma cells and decrease of gene expression including apoptosis category in glioma cells. These effects of cyanate may play a role in the nervous complications of patient with end-stage renal disease.