• Title/Summary/Keyword: problem solving task

Search Result 309, Processing Time 0.025 seconds

Analysis of Approachs to Learning Based on Student-Student Verbal Interactions according to the Type of Inquiry Experiments Using Everyday Materials (실생활 소재 탐구 실험 형태에 따른 학생-학생 언어적 상호작용에서의 학습 접근 수준 분석)

  • Kim, Hye-Sim;Lee, Eun-Kyeong;Kang, Seong-Joo
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.1
    • /
    • pp.16-24
    • /
    • 2006
  • The purpose of this study was to compare student-student verbal interaction from two type's experiments; problem-solving and task-solving. For this study, five 3rd grade middle school students were selected and their verbal interactions recorded via voice and video; and later transcribed. The student-student verbal interactions were classified as questions, explanations, thoughts, or metacognition fields, which were separated into deep versus surface learning approaches. For the problem-solving experiment, findings revealed that the number of verbal interactions is more than doubled and in particular, the number of verbal interactions using deep-approach is more than quadrupled from the point of problem-recognition to problem-solution. As for the task-solving experiment, findings showed that verbal interactions remained evenly distributed throughout the entire experiment. Finally, it was also discovered that students relied upon a more deep learning approach during the problem-solving experiment than the task-solving experiment.

Students' Problem Solving Based on their Construction of Image about Problem Contexts (문제맥락에 대한 이미지가 문제해결에 미치는 영향)

  • Koo, Dae Hwa;Shin, Jaehong
    • Journal of the Korean School Mathematics Society
    • /
    • v.23 no.1
    • /
    • pp.129-158
    • /
    • 2020
  • In this study, we presented two geometric tasks to three 11th grade students to identify the characteristics of the images that the students had at the beginning of problem-solving in the problem situations and investigated how their images changed during problem-solving and effected their problem-solving behaviors. In the first task, student A had a static image (type 1) at the beginning of his problem-solving process, but later developed into a dynamic image of type 3 and recognized the invariant relationship between the quantities in the problem situation. Student B and student C were observed as type 3 students throughout their problem-solving process. No differences were found in student B's and student C's images of the problem context in the first task, but apparent differences appeared in the second task. In the second task, both student B and student C demonstrated a dynamic image of the problem context. However, student B did not recognize the invariant relationship between the related quantities. In contrast, student C constructed a robust quantitative structure, which seemed to support him to perceive the invariant relationship. The results of this study also show that the success of solving the task 1 was determined by whether the students had reached the level of theoretical generalization with a dynamic image of the related quantities in the problem situation. In the case of task 2, the level of covariational reasoning with the two varying quantities in the problem situation was brought forth differences between the two students.

The Effects of Mental Capacity and Mental Demand on Problem Solving (문제해결자의 정신용량과 문제의 요구정신용량이 문제해결에 미치는 영향)

  • Ahn, Soo-Young;Kwon, Jae-Sool
    • Journal of The Korean Association For Science Education
    • /
    • v.16 no.2
    • /
    • pp.134-145
    • /
    • 1996
  • The purpose of this study was to investigate effects of mental capacity and mental demand on problem solving. Two kinds of tests were used for this study. One was FIT 752 test which required general knowledge, the other was Ohm's law test which required domain specific knowledge. The items of each test had the same logical structure and content knowledge but had different sizes of mental demand. The results of the study were summarized as follows: As mental demand of the items increased, the success rates decreased. The analysis of the hierarchical relation among items was that items with large mental demand were higher than those with small demand or at least the same level. According to the results, mental of an item was a significant factor affecting solving the problem. Effect of mental capacity on problem solving was different according to the kind of required knowledge to solve. Mental capacity was a significant factor affecting solving the FIT 752 task which required general knowledge. On the contary, solving the task which required domain specific knowledge, the results were different depending on subjects' chunk size. The results of problem solving of the groups which had small chunk size were that mental capacity was appeared a significant factor. However, results of problem solving of groups which had large chunk size were that mental capacity was not.

  • PDF

A Study on Learners' Perceptions and Learning styles of Task Research (R&E) conducted by Science High School Students

  • Dong-Seon Shin;Jong Keun Park
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.286-294
    • /
    • 2023
  • We studied learners' perceptions and learning styles of project research activities in the chemical field conducted by 54 science high school students. In a survey of students' perceptions of task research, positive responses were found in "internal motivation," "cooperation," "task solving," and "tenacity and immersion," and statistically significant differences were found in "self-directedness," "cooperation," and "tenacity and immersion" by year. The 'lower' group responded most positively in the 'cooperation' category, and the 'higher' group responded most positively in the 'task solving' category. As a result of investigating the learning styles of the students who conducted the task research, it was found in the order of assimilator, converger, accommodator, and diverger. The assimilators showed the characteristic of systematically and scientifically approaching the problem. Convergers were found to have excellent problem-solving and decision-making ability, are practical, and have experimental-based thinking characteristics. In this study, the characteristics of science high school students showed well in the results of the learning style performed.

The effect of achieving problem-solving ability in mathematical searching area based on level type learning using basic learning elements (기본학습요소를 활용한 수준별 유형화 학습이 수리탐구 영역의 문제해결력 신장에 미치는 영향)

  • 김태진
    • Journal of the Korean School Mathematics Society
    • /
    • v.3 no.1
    • /
    • pp.131-148
    • /
    • 2000
  • Above all, the ability to solve problems must be emphasized as a basic skill of mathematics, but it is neglected when we teach. In this study, learning task means [same meaning] [same form] [same technique], so I tried to extend mathematical scholastic ability of the students as an extensional problem solving that is a basic element of mathematics. The purpose of this study is the investigation of level type learning, using the basic learning elements to extend thinking ability. From the constructed hypothesis as follows and then implement it. I selected basic learning elements from an analyzed textbook and then task learning material was created for each level type learning. The problem solving ability will be extended through the level type learning of the small group, using the level type learning task material. The conclusions this study are as follows. The level type learning in small group learning, using and making level type learning material, having basic learning elements in analysed text are. Basic learning content is understood clearly and deeply, so, fundamentally, it is effective in achieving the problem solving in mathematics. It is an effective method to achieve the meta-cognitive faculty because achieved the expected method of solving problems and resulted in the true learning of content.

  • PDF

The effect on problem solving according to mental demand of items and chunking. (문제의 요구주의력과 덩이지식화 효과가 문제해결에 미치는 영향)

  • Ahn, Soo-Young;Kwon, Jae-Sool
    • Journal of The Korean Association For Science Education
    • /
    • v.15 no.3
    • /
    • pp.263-274
    • /
    • 1995
  • The purpose of this study was to find out effect of problem solving by mental demand of items and chunking level of problem solver on the item. The principal findings of study were as follows ; 1) According to increase of mental demand of items. students' achievement score appeared to decrease and the more mental demand an item needed. the higher or at least the same hierarchical item was. These results showed that mental demand of item was main factor which decided difficulties of problem solving. 2) Though items have the same mental demand. students' achievement score were different between balance beam task and 2nd law task (achievement score of balance beam task < achievement score of 2nd law task). 3) Achievement score of LM group who used chunked knowledge to solve balance beam task were higher than non LM group who used non chunked knowledge. 4) The level of chunked knowledge was different between two tasks when non LM group solved items of two tasks. On the other hand, LM group used the same level of chunked knowledge to solve items of two tasks. 5) Achievement score of non LM group was the same between items of two tasks after treatment due to chunking effect by treatment. But achievement score of LM group didn't change before and after treatment. The chunking effect by treatment had an effect on non LM group, but it was not on LM group.

  • PDF

Analysis of Elementary Pre-Service Teachers' Collaborative Problem Solving Competency Related to Science which Required in the Digital Age (디지털 시대에 요구되는 예비 초등교사의 과학 관련 협력적 문제해결역량 분석)

  • Na, Jiyeon;Yoon, Heojeong
    • Journal of Korean Elementary Science Education
    • /
    • v.39 no.4
    • /
    • pp.494-505
    • /
    • 2020
  • In this study, we surveyed characteristics of the science related collaborative problem solving competency of pre-service elementary teachers, especially required in the digital age. The participants in online survey were 119 pre-service elementary teachers of National University of Education located in Gangwon province. The analyzed results of survey were as follows: First, pre-service teachers performed their task responsibly in collaborative problem solving context related to science. However, they lacked competencies in making rubrics for problem solving processes or outcomes, and setting up rules about team activities. Second, in using ICT technology, the competencies of utilizing tools such as app and software lacked compared with the competencies of searching data in online and using ppt. Third, there was no statistically significant difference among groups by their intensive major in university or selective subject in high school. Nevertheless, pre-service teachers majoring in natural science showed more persistence than those majoring in humanities in problem solving context. Finally, there was no significant gender difference except 'clear communication and accomplishment'. That is, female pre-service teachers performed more responsible in their task and showed more fluency in communication and presentation within their group than male counterparts. Based on these results, implications in the field of pre-service teacher education were discussed.

The Relationship between Inductive-Deductive Reasoning Ability and Mental Capacity and Perseveration Error of Elementary School Students (초등학교 학생들의 귀납-연역적 추론 능력과 정신 용량 및 보속 오류와의 관계)

  • 김설한;정진우;김효남
    • Journal of Korean Elementary Science Education
    • /
    • v.17 no.1
    • /
    • pp.47-60
    • /
    • 1998
  • The purpose of this study was to analyze the problem solving strategies of elementary school students and to find out correlations between the functional mental capacity, the perseveration error and the Creature Card Task solving ability. To study this purpose, four categories were selected through pilot test. The sample consisted of 231, the 4th grade students and the 5th grade students in Inchon, Korea and selected 32 students among them. Three instruments were used in this study, Creature Card Task, FIT(Figural Intersection Test) and WCST(Wisconsin Card Sorting Test). Researcher interviewed 32 students about Creature Card Task solving strategies and tests with FIT, WCST. Major findings of the study are as follows: 1. Creature Card Task solving strategies of the selected 4th & 5th grade students were different. Some students solved problems during individual interviews. 2. Creature Card Task solving abilities were significantly correlated with the functional mental capacity and the perseveration error.

  • PDF

Creation and Elaboration of Problem Space Depending on Students' Attitudes toward the Task and Thinking Skills (학생의 과제에 대한 태도와 사고력에 따른 문제공간의 형성과 정교화)

  • Kim, Kyung-Jin
    • Journal of the Korean earth science society
    • /
    • v.30 no.1
    • /
    • pp.141-151
    • /
    • 2009
  • Inquiry has been emphasized in science classrooms, but the problems shown in the inquiry are somewhat different with ones that students usually meet and experience in everyday life. The purpose of this study is to investigate how attitudes toward the task and thinking skills affect students' problem solving process, especially, the way of creating a problem space and elaborating problem solving strategies when they have little schema. The difference in students' problem solving strategies of Lego Robotics class, one of the summer programs for $4^{th}-6^{th}$ grade gifted students, which is new to them, was investigated. The results are as follows: (1) The difference in attitudes toward the task, or selection and identification of the missions, and the perception of operators, affected creating a different problem space. (2) Different level of thinking skills, or analytical and flexible thinking, efficient elaborative skill, and application of schema affected a different level of elaboration of the problem space and resulted in asuccess rate of problem solving. (3) Different initial problem space resulted in different problem solving strategies. But without thinking skills, students could not elaborate problem solving strategies efficiently. Several instructional recommendations to promote scientific inquiry were suggested based on the results.

A Task Centered Scratch Programming Learning Program for Enhancing Learners' Problem Solving Abilities (문제해결력 향상을 위한 과제 중심 스크래치 프로그래밍 학습 프로그램)

  • Lee, EunKyoung
    • The Journal of Korean Association of Computer Education
    • /
    • v.12 no.6
    • /
    • pp.1-9
    • /
    • 2009
  • Programming learning may help to enhance learners' complex problem solving abilities. However, it may cause excessive cognitive loads for learners. Therefore, selection of programming tools and design of teaching and learning strategies to minimize the learners' cognitive loads and to maximize the learning effects. A task centered Scratch programming learning program was developed to enhance problem solving abilities of middle school students. And then, we implemented the developed program in middle school programming classes and analysed the educational effects of the developed program. We found that the developed program was helpful in enhancing learners' problem solving abilities, especially in the element of 'troubleshooting', which explains ability of error detecting and correcting.

  • PDF