• Title/Summary/Keyword: problem analysis

Search Result 16,360, Processing Time 0.051 seconds

A study on the gratification of the patient in the Dental Hospital (치과병원 내원환자의 만족도 조사분석)

  • Kim, Min-Young;Lee, Keun-Woo;Moon, Hong-Suk;Chung, Moon-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.1
    • /
    • pp.65-82
    • /
    • 2008
  • Statement of problem : Today's market economy has been changed more and more to consumer concerned. It is owing to not only consumers ' rising standard of living and education, but also purchasers' easy accessibilities to products through various mass media. The consumer centered market system, where customer can choose items with diverse alternatives to satisfy their self esteem, is also applied to the field of medical business, and accelerated by an increasing income level of shoppers and introducing the whole nations' medical insurance system. Today, the medical industry has become competitive due to increasing number of medical institutions and medical personnel, and this offers wide choices to consumers in the medical market place. At this point of time, it is essential to survey on the primary factor of gratification for the patient in the Dental clinic, as well as on the problems and suggestions in medical service. Purpose : The analysis in this study shows essential factors and expected influential elements in satisfaction of the patient in the Dental Hopsital, and strategic suggestions for the provider of dental service, which can be of benefit to the prospective customer as well as can make improvement in the quality of dental treatment service. Material and method : This study had been researched by collecting and analyzing the organized questionnaires, which were filled in directly from 784 patients, who visit Dental Hospital, Yonsei University in Seoul, from January 23rd to April 15th. Result : It can be summarized like the followings. 1. The social and demographical peculiarities of respondents are as follows. Samples of gender and marital status are adequately extracted, but data on occupation and treatment are are under a bias toward students, undergraduates and graduate students, and orthodontics. 2. 74% of patients who answer the questionnaire were highly satisfied with the service of dental clinic in the section of overall satisfaction. 3. The survey result about specific service of dental treatment, within sections of independent variables, is like the followings; Patients are highly gratified with service system, kindness, explanation, explanation on expected waiting hours, reservation system, emergency measures, expert treatment, existence of knowledge of dentistry, size of hospital, disinfection, equipment and parking, but lowly satisfied with expense of treatment, preparatory hours for treatment, waiting hours, treatment hours and the period of subscription. 4. The correlation analysis showed that there is no significant linear relationship between the independent variables. 5. The probit regression analysis showed that 8 out of 34 independent variables explained the dependent variables at the level of 0.01. 6. It shows that 8 independent variables, which can affect customers 'satisfaction, are clearing up of inconvenience, service system, kindness, explanation, treatment hours per attendance, reservation system, existence of knowledge of dentistry, and contentment of equipment in the hospital. Conclusion : The consumer's satisfaction totally relies on subjective evaluations of customers. Providing appropriate service, which can meet the criteria for the customer who demands various wares, pursues luxury goods, and expects high quality of medical service, is essential to fulfill patients' satisfaction. Many medical institutions do their best to satisfy their customer, touch their consumer, and offer patience centered services, and it is also applied to the field of dentistry. Establishing brand new strategic managements and elevating the quality of dental service based on this survey are required to improve the satisfaction of patience in the Dental Hospital.

Performance analysis of Frequent Itemset Mining Technique based on Transaction Weight Constraints (트랜잭션 가중치 기반의 빈발 아이템셋 마이닝 기법의 성능분석)

  • Yun, Unil;Pyun, Gwangbum
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.67-74
    • /
    • 2015
  • In recent years, frequent itemset mining for considering the importance of each item has been intensively studied as one of important issues in the data mining field. According to strategies utilizing the item importance, itemset mining approaches for discovering itemsets based on the item importance are classified as follows: weighted frequent itemset mining, frequent itemset mining using transactional weights, and utility itemset mining. In this paper, we perform empirical analysis with respect to frequent itemset mining algorithms based on transactional weights. The mining algorithms compute transactional weights by utilizing the weight for each item in large databases. In addition, these algorithms discover weighted frequent itemsets on the basis of the item frequency and weight of each transaction. Consequently, we can see the importance of a certain transaction through the database analysis because the weight for the transaction has higher value if it contains many items with high values. We not only analyze the advantages and disadvantages but also compare the performance of the most famous algorithms in the frequent itemset mining field based on the transactional weights. As a representative of the frequent itemset mining using transactional weights, WIS introduces the concept and strategies of transactional weights. In addition, there are various other state-of-the-art algorithms, WIT-FWIs, WIT-FWIs-MODIFY, and WIT-FWIs-DIFF, for extracting itemsets with the weight information. To efficiently conduct processes for mining weighted frequent itemsets, three algorithms use the special Lattice-like data structure, called WIT-tree. The algorithms do not need to an additional database scanning operation after the construction of WIT-tree is finished since each node of WIT-tree has item information such as item and transaction IDs. In particular, the traditional algorithms conduct a number of database scanning operations to mine weighted itemsets, whereas the algorithms based on WIT-tree solve the overhead problem that can occur in the mining processes by reading databases only one time. Additionally, the algorithms use the technique for generating each new itemset of length N+1 on the basis of two different itemsets of length N. To discover new weighted itemsets, WIT-FWIs performs the itemset combination processes by using the information of transactions that contain all the itemsets. WIT-FWIs-MODIFY has a unique feature decreasing operations for calculating the frequency of the new itemset. WIT-FWIs-DIFF utilizes a technique using the difference of two itemsets. To compare and analyze the performance of the algorithms in various environments, we use real datasets of two types (i.e., dense and sparse) in terms of the runtime and maximum memory usage. Moreover, a scalability test is conducted to evaluate the stability for each algorithm when the size of a database is changed. As a result, WIT-FWIs and WIT-FWIs-MODIFY show the best performance in the dense dataset, and in sparse dataset, WIT-FWI-DIFF has mining efficiency better than the other algorithms. Compared to the algorithms using WIT-tree, WIS based on the Apriori technique has the worst efficiency because it requires a large number of computations more than the others on average.

Case Analysis of the Promotion Methodologies in the Smart Exhibition Environment (스마트 전시 환경에서 프로모션 적용 사례 및 분석)

  • Moon, Hyun Sil;Kim, Nam Hee;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.171-183
    • /
    • 2012
  • In the development of technologies, the exhibition industry has received much attention from governments and companies as an important way of marketing activities. Also, the exhibitors have considered the exhibition as new channels of marketing activities. However, the growing size of exhibitions for net square feet and the number of visitors naturally creates the competitive environment for them. Therefore, to make use of the effective marketing tools in these environments, they have planned and implemented many promotion technics. Especially, through smart environment which makes them provide real-time information for visitors, they can implement various kinds of promotion. However, promotions ignoring visitors' various needs and preferences can lose the original purposes and functions of them. That is, as indiscriminate promotions make visitors feel like spam, they can't achieve their purposes. Therefore, they need an approach using STP strategy which segments visitors through right evidences (Segmentation), selects the target visitors (Targeting), and give proper services to them (Positioning). For using STP Strategy in the smart exhibition environment, we consider these characteristics of it. First, an exhibition is defined as market events of a specific duration, which are held at intervals. According to this, exhibitors who plan some promotions should different events and promotions in each exhibition. Therefore, when they adopt traditional STP strategies, a system can provide services using insufficient information and of existing visitors, and should guarantee the performance of it. Second, to segment automatically, cluster analysis which is generally used as data mining technology can be adopted. In the smart exhibition environment, information of visitors can be acquired in real-time. At the same time, services using this information should be also provided in real-time. However, many clustering algorithms have scalability problem which they hardly work on a large database and require for domain knowledge to determine input parameters. Therefore, through selecting a suitable methodology and fitting, it should provide real-time services. Finally, it is needed to make use of data in the smart exhibition environment. As there are useful data such as booth visit records and participation records for events, the STP strategy for the smart exhibition is based on not only demographical segmentation but also behavioral segmentation. Therefore, in this study, we analyze a case of the promotion methodology which exhibitors can provide a differentiated service to segmented visitors in the smart exhibition environment. First, considering characteristics of the smart exhibition environment, we draw evidences of segmentation and fit the clustering methodology for providing real-time services. There are many studies for classify visitors, but we adopt a segmentation methodology based on visitors' behavioral traits. Through the direct observation, Veron and Levasseur classify visitors into four groups to liken visitors' traits to animals (Butterfly, fish, grasshopper, and ant). Especially, because variables of their classification like the number of visits and the average time of a visit can estimate in the smart exhibition environment, it can provide theoretical and practical background for our system. Next, we construct a pilot system which automatically selects suitable visitors along the objectives of promotions and instantly provide promotion messages to them. That is, based on the segmentation of our methodology, our system automatically selects suitable visitors along the characteristics of promotions. We adopt this system to real exhibition environment, and analyze data from results of adaptation. As a result, as we classify visitors into four types through their behavioral pattern in the exhibition, we provide some insights for researchers who build the smart exhibition environment and can gain promotion strategies fitting each cluster. First, visitors of ANT type show high response rate for promotion messages except experience promotion. So they are fascinated by actual profits in exhibition area, and dislike promotions requiring a long time. Contrastively, visitors of GRASSHOPPER type show high response rate only for experience promotion. Second, visitors of FISH type appear favors to coupon and contents promotions. That is, although they don't look in detail, they prefer to obtain further information such as brochure. Especially, exhibitors that want to give much information for limited time should give attention to visitors of this type. Consequently, these promotion strategies are expected to give exhibitors some insights when they plan and organize their activities, and grow the performance of them.

A three-dimensional finite-element analysis of influence of splinting in mandibular posterior implants (스프린팅이 하악 구치부 임플랜트 보철물의 응력분산에 미치는 영향에 관한 삼차원 유한요소분석 연구)

  • Baik, Sang-Hyun;Jang, Ik-Tae;Kim, Sung-Kyun;Koak, Jai-Young;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.157-168
    • /
    • 2008
  • Statement of problem: Over the past two decades, implant supported fixed prosthesis have been widely used. However, there are few studies conducted systematically and intensively on the splinting effect of implant systems in mandible. Purpose: The purpose of this study was to investigate the changes in stress distributions in the mandibular implants with splinting or non-splinting crowns by performing finite element analysis. Materials and methods: Cortical and cancellous bone were modeled as homogeneous, transversely isotropic, linearly elastic. Perfect bonding was assumed at all interfaces. Implant models were classified as follows. Group 1: $Br{{\aa}}nemark$ length 8.5mm 13mm splinting type Group 2: $Br{{\aa}}nemark$ length 8.5mm 13mm Non-splinting type Group 3: ITI length 8.5mm 13mm splinting type Group 4: ITI length 8.5mm 13mm Non-splinting type An load of 100N was applied vertically and horizontally. Stress levels were calculated using von Mises stresses values. Results: 1. The stress distribution and maximum von Mises stress of two-length implants (8.5mm, 13mm) was similar. 2. The stress of vertical load concentrated on mesial side of implant while the stress of horizontal load was distributed on both side of implant. 3. Stress of internal connection type was spreading through abutment screw but the stress of external connection type was concentrated on cortical bone level. 4. Degree of stress reduction was higher in the external connection type than in the internal connection type.

An Empirical Study on the Influencing Factors for Big Data Intented Adoption: Focusing on the Strategic Value Recognition and TOE Framework (빅데이터 도입의도에 미치는 영향요인에 관한 연구: 전략적 가치인식과 TOE(Technology Organizational Environment) Framework을 중심으로)

  • Ka, Hoi-Kwang;Kim, Jin-soo
    • Asia pacific journal of information systems
    • /
    • v.24 no.4
    • /
    • pp.443-472
    • /
    • 2014
  • To survive in the global competitive environment, enterprise should be able to solve various problems and find the optimal solution effectively. The big-data is being perceived as a tool for solving enterprise problems effectively and improve competitiveness with its' various problem solving and advanced predictive capabilities. Due to its remarkable performance, the implementation of big data systems has been increased through many enterprises around the world. Currently the big-data is called the 'crude oil' of the 21st century and is expected to provide competitive superiority. The reason why the big data is in the limelight is because while the conventional IT technology has been falling behind much in its possibility level, the big data has gone beyond the technological possibility and has the advantage of being utilized to create new values such as business optimization and new business creation through analysis of big data. Since the big data has been introduced too hastily without considering the strategic value deduction and achievement obtained through the big data, however, there are difficulties in the strategic value deduction and data utilization that can be gained through big data. According to the survey result of 1,800 IT professionals from 18 countries world wide, the percentage of the corporation where the big data is being utilized well was only 28%, and many of them responded that they are having difficulties in strategic value deduction and operation through big data. The strategic value should be deducted and environment phases like corporate internal and external related regulations and systems should be considered in order to introduce big data, but these factors were not well being reflected. The cause of the failure turned out to be that the big data was introduced by way of the IT trend and surrounding environment, but it was introduced hastily in the situation where the introduction condition was not well arranged. The strategic value which can be obtained through big data should be clearly comprehended and systematic environment analysis is very important about applicability in order to introduce successful big data, but since the corporations are considering only partial achievements and technological phases that can be obtained through big data, the successful introduction is not being made. Previous study shows that most of big data researches are focused on big data concept, cases, and practical suggestions without empirical study. The purpose of this study is provide the theoretically and practically useful implementation framework and strategies of big data systems with conducting comprehensive literature review, finding influencing factors for successful big data systems implementation, and analysing empirical models. To do this, the elements which can affect the introduction intention of big data were deducted by reviewing the information system's successful factors, strategic value perception factors, considering factors for the information system introduction environment and big data related literature in order to comprehend the effect factors when the corporations introduce big data and structured questionnaire was developed. After that, the questionnaire and the statistical analysis were performed with the people in charge of the big data inside the corporations as objects. According to the statistical analysis, it was shown that the strategic value perception factor and the inside-industry environmental factors affected positively the introduction intention of big data. The theoretical, practical and political implications deducted from the study result is as follows. The frist theoretical implication is that this study has proposed theoretically effect factors which affect the introduction intention of big data by reviewing the strategic value perception and environmental factors and big data related precedent studies and proposed the variables and measurement items which were analyzed empirically and verified. This study has meaning in that it has measured the influence of each variable on the introduction intention by verifying the relationship between the independent variables and the dependent variables through structural equation model. Second, this study has defined the independent variable(strategic value perception, environment), dependent variable(introduction intention) and regulatory variable(type of business and corporate size) about big data introduction intention and has arranged theoretical base in studying big data related field empirically afterwards by developing measurement items which has obtained credibility and validity. Third, by verifying the strategic value perception factors and the significance about environmental factors proposed in the conventional precedent studies, this study will be able to give aid to the afterwards empirical study about effect factors on big data introduction. The operational implications are as follows. First, this study has arranged the empirical study base about big data field by investigating the cause and effect relationship about the influence of the strategic value perception factor and environmental factor on the introduction intention and proposing the measurement items which has obtained the justice, credibility and validity etc. Second, this study has proposed the study result that the strategic value perception factor affects positively the big data introduction intention and it has meaning in that the importance of the strategic value perception has been presented. Third, the study has proposed that the corporation which introduces big data should consider the big data introduction through precise analysis about industry's internal environment. Fourth, this study has proposed the point that the size and type of business of the corresponding corporation should be considered in introducing the big data by presenting the difference of the effect factors of big data introduction depending on the size and type of business of the corporation. The political implications are as follows. First, variety of utilization of big data is needed. The strategic value that big data has can be accessed in various ways in the product, service field, productivity field, decision making field etc and can be utilized in all the business fields based on that, but the parts that main domestic corporations are considering are limited to some parts of the products and service fields. Accordingly, in introducing big data, reviewing the phase about utilization in detail and design the big data system in a form which can maximize the utilization rate will be necessary. Second, the study is proposing the burden of the cost of the system introduction, difficulty in utilization in the system and lack of credibility in the supply corporations etc in the big data introduction phase by corporations. Since the world IT corporations are predominating the big data market, the big data introduction of domestic corporations can not but to be dependent on the foreign corporations. When considering that fact, that our country does not have global IT corporations even though it is world powerful IT country, the big data can be thought to be the chance to rear world level corporations. Accordingly, the government shall need to rear star corporations through active political support. Third, the corporations' internal and external professional manpower for the big data introduction and operation lacks. Big data is a system where how valuable data can be deducted utilizing data is more important than the system construction itself. For this, talent who are equipped with academic knowledge and experience in various fields like IT, statistics, strategy and management etc and manpower training should be implemented through systematic education for these talents. This study has arranged theoretical base for empirical studies about big data related fields by comprehending the main variables which affect the big data introduction intention and verifying them and is expected to be able to propose useful guidelines for the corporations and policy developers who are considering big data implementationby analyzing empirically that theoretical base.

A Store Recommendation Procedure in Ubiquitous Market for User Privacy (U-마켓에서의 사용자 정보보호를 위한 매장 추천방법)

  • Kim, Jae-Kyeong;Chae, Kyung-Hee;Gu, Ja-Chul
    • Asia pacific journal of information systems
    • /
    • v.18 no.3
    • /
    • pp.123-145
    • /
    • 2008
  • Recently, as the information communication technology develops, the discussion regarding the ubiquitous environment is occurring in diverse perspectives. Ubiquitous environment is an environment that could transfer data through networks regardless of the physical space, virtual space, time or location. In order to realize the ubiquitous environment, the Pervasive Sensing technology that enables the recognition of users' data without the border between physical and virtual space is required. In addition, the latest and diversified technologies such as Context-Awareness technology are necessary to construct the context around the user by sharing the data accessed through the Pervasive Sensing technology and linkage technology that is to prevent information loss through the wired, wireless networking and database. Especially, Pervasive Sensing technology is taken as an essential technology that enables user oriented services by recognizing the needs of the users even before the users inquire. There are lots of characteristics of ubiquitous environment through the technologies mentioned above such as ubiquity, abundance of data, mutuality, high information density, individualization and customization. Among them, information density directs the accessible amount and quality of the information and it is stored in bulk with ensured quality through Pervasive Sensing technology. Using this, in the companies, the personalized contents(or information) providing became possible for a target customer. Most of all, there are an increasing number of researches with respect to recommender systems that provide what customers need even when the customers do not explicitly ask something for their needs. Recommender systems are well renowned for its affirmative effect that enlarges the selling opportunities and reduces the searching cost of customers since it finds and provides information according to the customers' traits and preference in advance, in a commerce environment. Recommender systems have proved its usability through several methodologies and experiments conducted upon many different fields from the mid-1990s. Most of the researches related with the recommender systems until now take the products or information of internet or mobile context as its object, but there is not enough research concerned with recommending adequate store to customers in a ubiquitous environment. It is possible to track customers' behaviors in a ubiquitous environment, the same way it is implemented in an online market space even when customers are purchasing in an offline marketplace. Unlike existing internet space, in ubiquitous environment, the interest toward the stores is increasing that provides information according to the traffic line of the customers. In other words, the same product can be purchased in several different stores and the preferred store can be different from the customers by personal preference such as traffic line between stores, location, atmosphere, quality, and price. Krulwich(1997) has developed Lifestyle Finder which recommends a product and a store by using the demographical information and purchasing information generated in the internet commerce. Also, Fano(1998) has created a Shopper's Eye which is an information proving system. The information regarding the closest store from the customers' present location is shown when the customer has sent a to-buy list, Sadeh(2003) developed MyCampus that recommends appropriate information and a store in accordance with the schedule saved in a customers' mobile. Moreover, Keegan and O'Hare(2004) came up with EasiShop that provides the suitable tore information including price, after service, and accessibility after analyzing the to-buy list and the current location of customers. However, Krulwich(1997) does not indicate the characteristics of physical space based on the online commerce context and Keegan and O'Hare(2004) only provides information about store related to a product, while Fano(1998) does not fully consider the relationship between the preference toward the stores and the store itself. The most recent research by Sedah(2003), experimented on campus by suggesting recommender systems that reflect situation and preference information besides the characteristics of the physical space. Yet, there is a potential problem since the researches are based on location and preference information of customers which is connected to the invasion of privacy. The primary beginning point of controversy is an invasion of privacy and individual information in a ubiquitous environment according to researches conducted by Al-Muhtadi(2002), Beresford and Stajano(2003), and Ren(2006). Additionally, individuals want to be left anonymous to protect their own personal information, mentioned in Srivastava(2000). Therefore, in this paper, we suggest a methodology to recommend stores in U-market on the basis of ubiquitous environment not using personal information in order to protect individual information and privacy. The main idea behind our suggested methodology is based on Feature Matrices model (FM model, Shahabi and Banaei-Kashani, 2003) that uses clusters of customers' similar transaction data, which is similar to the Collaborative Filtering. However unlike Collaborative Filtering, this methodology overcomes the problems of personal information and privacy since it is not aware of the customer, exactly who they are, The methodology is compared with single trait model(vector model) such as visitor logs, while looking at the actual improvements of the recommendation when the context information is used. It is not easy to find real U-market data, so we experimented with factual data from a real department store with context information. The recommendation procedure of U-market proposed in this paper is divided into four major phases. First phase is collecting and preprocessing data for analysis of shopping patterns of customers. The traits of shopping patterns are expressed as feature matrices of N dimension. On second phase, the similar shopping patterns are grouped into clusters and the representative pattern of each cluster is derived. The distance between shopping patterns is calculated by Projected Pure Euclidean Distance (Shahabi and Banaei-Kashani, 2003). Third phase finds a representative pattern that is similar to a target customer, and at the same time, the shopping information of the customer is traced and saved dynamically. Fourth, the next store is recommended based on the physical distance between stores of representative patterns and the present location of target customer. In this research, we have evaluated the accuracy of recommendation method based on a factual data derived from a department store. There are technological difficulties of tracking on a real-time basis so we extracted purchasing related information and we added on context information on each transaction. As a result, recommendation based on FM model that applies purchasing and context information is more stable and accurate compared to that of vector model. Additionally, we could find more precise recommendation result as more shopping information is accumulated. Realistically, because of the limitation of ubiquitous environment realization, we were not able to reflect on all different kinds of context but more explicit analysis is expected to be attainable in the future after practical system is embodied.

Clickstream Big Data Mining for Demographics based Digital Marketing (인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝)

  • Park, Jiae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.143-163
    • /
    • 2016
  • The demographics of Internet users are the most basic and important sources for target marketing or personalized advertisements on the digital marketing channels which include email, mobile, and social media. However, it gradually has become difficult to collect the demographics of Internet users because their activities are anonymous in many cases. Although the marketing department is able to get the demographics using online or offline surveys, these approaches are very expensive, long processes, and likely to include false statements. Clickstream data is the recording an Internet user leaves behind while visiting websites. As the user clicks anywhere in the webpage, the activity is logged in semi-structured website log files. Such data allows us to see what pages users visited, how long they stayed there, how often they visited, when they usually visited, which site they prefer, what keywords they used to find the site, whether they purchased any, and so forth. For such a reason, some researchers tried to guess the demographics of Internet users by using their clickstream data. They derived various independent variables likely to be correlated to the demographics. The variables include search keyword, frequency and intensity for time, day and month, variety of websites visited, text information for web pages visited, etc. The demographic attributes to predict are also diverse according to the paper, and cover gender, age, job, location, income, education, marital status, presence of children. A variety of data mining methods, such as LSA, SVM, decision tree, neural network, logistic regression, and k-nearest neighbors, were used for prediction model building. However, this research has not yet identified which data mining method is appropriate to predict each demographic variable. Moreover, it is required to review independent variables studied so far and combine them as needed, and evaluate them for building the best prediction model. The objective of this study is to choose clickstream attributes mostly likely to be correlated to the demographics from the results of previous research, and then to identify which data mining method is fitting to predict each demographic attribute. Among the demographic attributes, this paper focus on predicting gender, age, marital status, residence, and job. And from the results of previous research, 64 clickstream attributes are applied to predict the demographic attributes. The overall process of predictive model building is compose of 4 steps. In the first step, we create user profiles which include 64 clickstream attributes and 5 demographic attributes. The second step performs the dimension reduction of clickstream variables to solve the curse of dimensionality and overfitting problem. We utilize three approaches which are based on decision tree, PCA, and cluster analysis. We build alternative predictive models for each demographic variable in the third step. SVM, neural network, and logistic regression are used for modeling. The last step evaluates the alternative models in view of model accuracy and selects the best model. For the experiments, we used clickstream data which represents 5 demographics and 16,962,705 online activities for 5,000 Internet users. IBM SPSS Modeler 17.0 was used for our prediction process, and the 5-fold cross validation was conducted to enhance the reliability of our experiments. As the experimental results, we can verify that there are a specific data mining method well-suited for each demographic variable. For example, age prediction is best performed when using the decision tree based dimension reduction and neural network whereas the prediction of gender and marital status is the most accurate by applying SVM without dimension reduction. We conclude that the online behaviors of the Internet users, captured from the clickstream data analysis, could be well used to predict their demographics, thereby being utilized to the digital marketing.

Dynamic Limit and Predatory Pricing Under Uncertainty (불확실성하(不確實性下)의 동태적(動態的) 진입제한(進入制限) 및 약탈가격(掠奪價格) 책정(策定))

  • Yoo, Yoon-ha
    • KDI Journal of Economic Policy
    • /
    • v.13 no.1
    • /
    • pp.151-166
    • /
    • 1991
  • In this paper, a simple game-theoretic entry deterrence model is developed that integrates both limit pricing and predatory pricing. While there have been extensive studies which have dealt with predation and limit pricing separately, no study so far has analyzed these closely related practices in a unified framework. Treating each practice as if it were an independent phenomenon is, of course, an analytical necessity to abstract from complex realities. However, welfare analysis based on such a model may give misleading policy implications. By analyzing limit and predatory pricing within a single framework, this paper attempts to shed some light on the effects of interactions between these two frequently cited tactics of entry deterrence. Another distinctive feature of the paper is that limit and predatory pricing emerge, in equilibrium, as rational, profit maximizing strategies in the model. Until recently, the only conclusion from formal analyses of predatory pricing was that predation is unlikely to take place if every economic agent is assumed to be rational. This conclusion rests upon the argument that predation is costly; that is, it inflicts more losses upon the predator than upon the rival producer, and, therefore, is unlikely to succeed in driving out the rival, who understands that the price cutting, if it ever takes place, must be temporary. Recently several attempts have been made to overcome this modelling difficulty by Kreps and Wilson, Milgram and Roberts, Benoit, Fudenberg and Tirole, and Roberts. With the exception of Roberts, however, these studies, though successful in preserving the rationality of players, still share one serious weakness in that they resort to ad hoc, external constraints in order to generate profit maximizing predation. The present paper uses a highly stylized model of Cournot duopoly and derives the equilibrium predatory strategy without invoking external constraints except the assumption of asymmetrically distributed information. The underlying intuition behind the model can be summarized as follows. Imagine a firm that is considering entry into a monopolist's market but is uncertain about the incumbent firm's cost structure. If the monopolist has low cost, the rival would rather not enter because it would be difficult to compete with an efficient, low-cost firm. If the monopolist has high costs, however, the rival will definitely enter the market because it can make positive profits. In this situation, if the incumbent firm unwittingly produces its monopoly output, the entrant can infer the nature of the monopolist's cost by observing the monopolist's price. Knowing this, the high cost monopolist increases its output level up to what would have been produced by a low cost firm in an effort to conceal its cost condition. This constitutes limit pricing. The same logic applies when there is a rival competitor in the market. Producing a high cost duopoly output is self-revealing and thus to be avoided. Therefore, the firm chooses to produce the low cost duopoly output, consequently inflicting losses to the entrant or rival producer, thus acting in a predatory manner. The policy implications of the analysis are rather mixed. Contrary to the widely accepted hypothesis that predation is, at best, a negative sum game, and thus, a strategy that is unlikely to be played from the outset, this paper concludes that predation can be real occurence by showing that it can arise as an effective profit maximizing strategy. This conclusion alone may imply that the government can play a role in increasing the consumer welfare, say, by banning predation or limit pricing. However, the problem is that it is rather difficult to ascribe any welfare losses to these kinds of entry deterring practices. This difficulty arises from the fact that if the same practices have been adopted by a low cost firm, they could not be called entry-deterring. Moreover, the high cost incumbent in the model is doing exactly what the low cost firm would have done to keep the market to itself. All in all, this paper suggests that a government injunction of limit and predatory pricing should be applied with great care, evaluating each case on its own basis. Hasty generalization may work to the detriment, rather than the enhancement of consumer welfare.

  • PDF

A Study on the Observation of Soil Moisture Conditions and its Applied Possibility in Agriculture Using Land Surface Temperature and NDVI from Landsat-8 OLI/TIRS Satellite Image (Landsat-8 OLI/TIRS 위성영상의 지표온도와 식생지수를 이용한 토양의 수분 상태 관측 및 농업분야에의 응용 가능성 연구)

  • Chae, Sung-Ho;Park, Sung-Hwan;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.931-946
    • /
    • 2017
  • The purpose of this study is to observe and analyze soil moisture conditions with high resolution and to evaluate its application feasibility to agriculture. For this purpose, we used three Landsat-8 OLI (Operational Land Imager)/TIRS (Thermal Infrared Sensor) optical and thermal infrared satellite images taken from May to June 2015, 2016, and 2017, including the rural areas of Jeollabuk-do, where 46% of agricultural areas are located. The soil moisture conditions at each date in the study area can be effectively obtained through the SPI (Standardized Precipitation Index)3 drought index, and each image has near normal, moderately wet, and moderately dry soil moisture conditions. The temperature vegetation dryness index (TVDI) was calculated to observe the soil moisture status from the Landsat-8 OLI/TIRS images with different soil moisture conditions and to compare and analyze the soil moisture conditions obtained from the SPI3 drought index. TVDI is estimated from the relationship between LST (Land Surface Temperature) and NDVI (Normalized Difference Vegetation Index) calculated from Landsat-8 OLI/TIRS satellite images. The maximum/minimum values of LST according to NDVI are extracted from the distribution of pixels in the feature space of LST-NDVI, and the Dry/Wet edges of LST according to NDVI can be determined by linear regression analysis. The TVDI value is obtained by calculating the ratio of the LST value between the two edges. We classified the relative soil moisture conditions from the TVDI values into five stages: very wet, wet, normal, dry, and very dry and compared to the soil moisture conditions obtained from SPI3. Due to the rice-planing season from May to June, 62% of the whole images were classified as wet and very wet due to paddy field areas which are the largest proportions in the image. Also, the pixels classified as normal were analyzed because of the influence of the field area in the image. The TVDI classification results for the whole image roughly corresponded to the SPI3 soil moisture condition, but they did not correspond to the subdivision results which are very dry, wet, and very wet. In addition, after extracting and classifying agricultural areas of paddy field and field, the paddy field area did not correspond to the SPI3 drought index in the very dry, normal and very wet classification results, and the field area did not correspond to the SPI3 drought index in the normal classification. This is considered to be a problem in Dry/Wet edge estimation due to outlier such as extremely dry bare soil and very wet paddy field area, water, cloud and mountain topography effects (shadow). However, in the agricultural area, especially the field area, in May to June, it was possible to effectively observe the soil moisture conditions as a subdivision. It is expected that the application of this method will be possible by observing the temporal and spatial changes of the soil moisture status in the agricultural area using the optical satellite with high spatial resolution and forecasting the agricultural production.

Recent Research for the Seismic Activities and Crustal Velocity Structure (국내 지진활동 및 지각구조 연구동향)

  • Kim, Sung-Kyun;Jun, Myung-Soon;Jeon, Jeong-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.369-384
    • /
    • 2006
  • Korean Peninsula, located on the southeastern part of Eurasian plate, belongs to the intraplate region. The characteristics of intraplate earthquake show the low and rare seismicity and the sparse and irregular distribution of epicenters comparing to interplate earthquake. To evaluate the exact seismic activity in intraplate region, long-term seismic data including historical earthquake data should be archived. Fortunately the long-term historical earthquake records about 2,000 years are available in Korea Peninsula. By the analysis of this historical and instrumental earthquake data, seismic activity was very high in 16-18 centuries and is more active at the Yellow sea area than East sea area. Comparing to the high seismic activity of the north-eastern China in 16-18 centuries, it is inferred that seismic activity in two regions shows close relationship. Also general trend of epicenter distribution shows the SE-NW direction. In Korea Peninsula, the first seismic station was installed at Incheon in 1905 and 5 additional seismic stations were installed till 1943. There was no seismic station from 1945 to 1962, but a World Wide Standardized Seismograph was installed at Seoul in 1963. In 1990, Korean Meteorological Adminstration(KMA) had established centralized modem seismic network in real-time, consisted of 12 stations. After that time, many institutes tried to expand their own seismic networks in Korea Peninsula. Now KMA operates 35 velocity-type seismic stations and 75 accelerometers and Korea Institute of Geoscience and Mineral Resources operates 32 and 16 stations, respectively. Korea Institute of Nuclear Safety and Korea Electric Power Research Institute operate 4 and 13 stations, consisted of velocity-type and accelerometer. In and around the Korean Peninsula, 27 intraplate earthquake mechanisms since 1936 were analyzed to understand the regional stress orientation and tectonics. These earthquakes are largest ones in this century and may represent the characteristics of earthquake in this region. Focal mechanism of these earthquakes show predominant strike-slip faulting with small amount of thrust components. The average P-axis is almost horizontal ENE-WSW. In north-eastern China, strike-slip faulting is dominant and nearly horizontal average P-axis in ENE-WSW is very similar with the Korean Peninsula. On the other hand, in the eastern part of East Sea, thrust faulting is dominant and average P-axis is horizontal with ESE-WNW. This indicate that not only the subducting Pacific Plate in east but also the indenting Indian Plate controls earthquake mechanism in the far east of the Eurasian Plate. Crustal velocity model is very important to determine the hypocenters of the local earthquakes. But the crust model in and around Korean Peninsula is not clear till now, because the sufficient seismic data could not accumulated. To solve this problem, reflection and refraction seismic survey and seismic wave analysis method were simultaneously applied to two long cross-section traversing the southern Korean Peninsula since 2002. This survey should be continuously conducted.