• Title/Summary/Keyword: probable maximum precipitation

Search Result 54, Processing Time 0.031 seconds

Analysis on uncertainty in Probable Maximum Precipitation estimation with the pseudo-adiabatic assumption (위단열 가정을 기반한 가능최대강수량 산정의 불확실성 분석)

  • Kim, Youngkyu;Son, Minwoo;Kim, Sunmin;Tachikawa, Yasuto
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.58-58
    • /
    • 2022
  • 본 연구는 수분최대화방법(Moisture-maximizing method)를 기반으로 PMP(Probable Maximum Precipitation)을 산정하는 방법론을 평가하는 것을 목적으로 수행되었다. 수분최대화 방법은 특정 호우사상의 대기 수분 조건을 극대화하여 PMP 를 산정한다. 여기서, 대기 수분 조건은 대기 표면부터 상층부의 총 수분량으로부터 얻어지는 가강수량(Precipitable water, PW)으로 표현된다. PW 는 라디오존데로부터 직접 관측 및 수집되지만, 장기간 수집이 어렵고, 수집된 자료는 다수의 이상치 및 결측치를 포함한다. 이에 따라, WMO(World Meteorological Organization)에서는 표면 이슬점을 이용하여 위단열 가정(Pseudo-adiabatic assumption)하에PW 를 간접적으로 산정하는 방법론을 기반한 PMP 산정을 권고한다. 본 연구는 일본의 다수의 지역을 대상으로 실제 PW 를 이용하는 방법과 표면 이슬점을 이용하는 방법을 기반으로 산정된 수분최대화방법의 변수들의 편차를 분석하였다. 그 결과, 따듯한 기후 특성을 나타내는 일본의 남부지역은 두 방법의 편차가 매우 작았지만, 추운 기후 특성을 나타내는 일본의 북부지역은 표면 이슬점으로 산정된 PW 가 실제 PW 에 비해 과소 산정되어 PMP 를 과대 산정시켰다. 특히, 이불확실성은 호우 발생 시 표면 이슬점이 18℃ 이하일 때, 두드러지게 나타났다. 본 연구는 이불확실성을 밝히기 위해 실제 라디오존데로부터 관측된 대기 상층부의 대기 프로파일 검토하였다. 그 결과, 표면에서 가까운 대기 상층부의 위치에서 불규칙적으로 이슬점이 증가하는 패턴을 나타냈지만, 위단열 가정은 이를 묘사하기 어려웠다. 이는 결국 실제 PW 에 비해 이슬점을 이용하여 산정된 PW 가 과소 산정되는 결과로 이어졌다. 결과적으로, 호우 발생 시 표면 이슬점이 18℃ 이하로 낮은 지역에서 산정된 PW 를 적용하는 수분최대화방법으로 산정된 PMP 는 낮은 신뢰도를 나타낸다.

  • PDF

Future PMPs projection according to precipitation variation under RCP 8.5 climate change scenario (RCP 8.5 기후변화 시나리오의 강수량 변화에 따른 미래 PMPs의 전망)

  • Lee, Okjeong;Park, Myungwoo;Lee, Jeonghoon;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.107-119
    • /
    • 2016
  • Since future climate scenarios indicate that extreme precipitation events will intensity, probable maximum precipitations (PMPs) without being taken climate change into account are very likely to be underestimated. In this study future PMPs in accordance with the variation of future rainfall are estimated. The hydro-meteorologic method is used to calculate PMPs. The orographic transposition factor is applied in place of the conventional terrain impact factor which has been used in previous PMPs estimation reports. Future DADs are indirectly obtained by using bias-correction and moving-averaged changing factor method based on daily precipitation projection under KMA RCM (HEDGEM3-RA) RCP 8.5 climate change scenario. As a result, future PMPs were found to increase and the spatially-averaged annual PMPs increase rate in 4-hour and $25km^2$ was projected to be 3 mm by 2045. In addition, the increased rate of future PMPs is growing increasingly in the future, but it is thought that the uncertainty of estimating PMPs caused by future precipitation projections is also increased in the distant future.

A Study on Characteristics of Rainfall Triggering Landslides and Geometry of Slopes in Chuncheon during 2006 (2006년 춘천지역 산사태 유발 강우와 사면의 기하 특성에 관한 연구)

  • Yoo, Nam-Jae;Lee, Yong-Won;Kim, Ho-Jin
    • Journal of Industrial Technology
    • /
    • v.30 no.B
    • /
    • pp.33-40
    • /
    • 2010
  • This paper is results of analyzing the characteristics of rainfall triggering landslides and geometry of slopes, caused by the heavy rainfall and antecedent precipitation by Typhoons Ewiniar and Bilis at Chuncheon area in Gangwondo around July in 2006. As results of analyzing the characteristics of rainfall, landslides in 131 sites were found to happen due to the heavy rainfall having the maximum intensity of rainfall in an hour during July 15 and antecedent precipitation during July 12 to 14 causing the ground to be weak by increasing the degree of saturation previously. From results of analyzing the geometrical characteristics of 131 slopes where landslides occurred, the slope width were in the range of 6~10m. The average slope length and angle were 46m and $51.8^{\circ}$, which was relatively steep slope, respectively. Landlises occurred in the elevation of 400 - 500 m with the most probable frequency.

  • PDF

Climate Change Impacts and Adaptation on Hydrological Safety Perspectives of Existing Dams (기후변화에 따른 댐의 수문학적 안전성 평가 및 적응방안 고찰)

  • Park, Jiyeon;Jung, Il Won;Kwon, Ji Hye;Kim, Wonsul
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.149-156
    • /
    • 2019
  • Assessing the hydrological safety of existing dams against climate change and providing appropriate adaptation measures are important in terms of sustainable water supply and management. Korean major dams ensure their safety through periodic inspections and maintenance according to 'Special Act on the safety control and maintenance of establishments'. Especially when performing a full safety examination, principal engineer must assess the hydrological safety and prepare for potential risks. This study employed future probable maximum precipitation (PMP) estimated using outputs of regional climate models based on RCP4.5 and RCP8.5 greenhouse-gas emission scenarios to assess climate change impact on existing dam's future hydrological safety. The analysis period was selected from 2011 to 2040, from 2041 to 2070, and from 2071 to 2100. Evaluating the potential risk based on the future probable maximum flood (PMF) for four major dams (A, B, C, I) showed that climate change could induce increasing the overflow risk on three dams (A, B, I), although there are small differences depending on the RCP scenarios and the analysis periods. Our results suggested that dam managers should consider both non-structural measures and structural measures to adapt to the expected climate change.

Prediction of a Debris Flow Flooding Caused by Probable Maximum Precipitation (가능 최대강수량에 의한 토석류 범람 예측)

  • Kim, Yeon-Joong;Yoon, Jung-Sung;Kohji, Tanaka;Hur, Dong-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.2
    • /
    • pp.115-126
    • /
    • 2015
  • In recent years, debris flow disaster has occurred in multiple locations between high and low mountainous areas simultaneously with a flooding disaster in urban areas caused by heavy and torrential rainfall due to the changing global climate and environment. As a result, these disasters frequently lead to large-scale destruction of infrastructures or individual properties and cause psychological harm or human death. In order to mitigate these disasters more effectively, it is necessary to investigate what causes the damage with an integrated model of both disasters at once. The objectives of this study are to analyze the mechanism of debris flow for real basin, to determine the PMP and run-off discharge due to the DAD analysis, and to estimate the influence range of debris flow for fan area according to the scenario. To analyse the characteristics of debris flow at the real basin, the parameters such as the deposition pattern, deposit thickness, approaching velocity, occurrence of sediment volume and travel length are estimated from DAD analysis. As a results, the peak time precipitation is estimated by 135 mm/hr as torrential rainfall and maximum total amount of rainfall is estimated by 544 mm as typhoon related rainfall.

Comparison of flood inundation simulation between one- and two-dimensional numerical models for an emergency action plan of agricultural reservoirs

  • Kim, Jae Young;Jung, Sung Ho;Yeon, Min Ho;Lee, Gi Ha;Lee, Dae Eop
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.515-526
    • /
    • 2021
  • The frequency of typhoons and torrential rainfalls has increased due to climate change, and the concurrent risk of breakage of dams and reservoirs has increased due to structural aging. To cope with the risk of dam breakage, a more accurate emergency action plan (EAP) must be established, and more advanced technology must be developed for the prediction of flooding. Hence, the present study proposes a method for establishing a more effective EAP by performing flood and inundation analyses using one- and two-dimensional models. The probable maximum flood (PMF) under the condition of probable maximum precipitation (PMP) was calculated for the target area, namely the Gyeong-cheon reservoir watershed. The breakage scenario of the Gyeong-cheon reservoir was then built up, and breakage simulations were conducted using the dam-break flood forecasting (DAMBRK) model. The results of the outflow analysis at the main locations were used as the basis for the one-dimensional (1D) and two-dimensional (2D) flood inundation analyses using the watershed modeling system (WMS) and the FLUvial Modeling ENgine (FLUMEN), respectively. The maximum inundation area between the Daehari-cheon confluence and the Naeseong-cheon location was compared for each model. The 1D flood inundation analysis gave an area of 21.3 km2, and the 2D flood inundation analysis gave an area of 21.9 km2. Although these results indicate an insignificant difference of 0.6 km2 in the inundation area between the two models, it should be noted that one of the main locations (namely, the Yonggung-myeon Administrative and Welfare Center) was not inundated in the 1D (WMS) model but inundated in the 2D (FLUMEN) model.

Development of Efficient Dam Safety Management System (댐의 효율적인 관리를 위한 프로세스 개발)

  • Lim, Jeong-Yeul;Kim, Bum-Joo;Oh, Seok-Hoon;Jang, Bong-Seok;Park, Han-Gyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1596-1601
    • /
    • 2005
  • Recently, the probable maximum precipitation (PMP) of dam sites has been greatly increased, compared to that in design, due to a rise in precipitation by abnormal weather, which led to an increase in National interest for dam safety. Therefore, the purpose of this study is to develop a management system of dam safety. The main contents of the first stage($'03{\sim}'04$) of the project consisted of determining the object of management system of dam safety through researched present situation of dam safety management in domestic and reviewing operation for management system of dam safety in abroad. In the second stage($'05{\sim}'06$), the study pursues constructing a basis process of synthetic safety management system through dam safety program and developing a system that can judge dam safety with an improve in reliability of measurement data.

  • PDF

Studies on the Some Hydrological Quantities of Principal Locations in the Basin of Geum River(I) (금강유역(錦江流域) 주요지점(主要地点)의 제(諸) 수문량(水文量)에 관(關)한 연구(硏究)(I))

  • Ahn, Byoung Gi;Cho, Seung Seup
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.1
    • /
    • pp.281-300
    • /
    • 1975
  • The precipitation data and water level data in twenty-four sampling places, to investigate same hydrological quantities along the basin of Geum River, have been analyzed, and the findings for the first report are summarized as follows. 1. The mean annual precipitation in the basin of Geum River is of 1203mm, and the areal weight of areal rainfall by Thiessen's method shows as Table 1. 2. The areas where have maximum annual precipitation of 1501 to 2000mm, are seventeen placed among twentyfour gauging stations, and it is founded to be the highest rate with 71 percents. The precipitation of below 1500mm is measured in the other three statinons, and that of above 2001mm in four stations, too. 3. The areas where have maximum rainfall of 201 to 300mm within a day, are fifteen places, and that comes in the highest rate of distribution with 63 percents. 4. As to distribution of the places with maximum rainfall of below and above 300mm within two days, it shows respectively 50 percents. 5. The areas where have maximum rainfall of 301 to 400mm within three days, are fifteen places, and it is the highest rate of distribution with 63 percents. 6. The fourteen places have maximum rainfall of 401 to 600mm within a continuous day, it is the highest rate of distribution with 58 percents. 7. Table 5 shows probable maximum rainfall within a day, and it does the most rainfall a long the upper stream of Daecheong dam site around Muju, and the next shows in the areas around Ganggyeung, Gongju and Buyeu. 8. During irrigation period on paddy corp, for 100 days from early ten days in June to early ten days in September the areas where have rainfall of 601 to 800mm are sixteen places, and it is the highest rate of distribution with 76 percents, as Table 6 9. The areas where have effective rainfall of 501 to 600mm, are fifteen places, and it is the highest rate of distribution with 71 percents. Thirteen places have the effective ratio of 66 to 75 percents, and it means 62 percents of distribution, and the next, 76 to 85 percents in the seven places, and it comes 33 percents. 10. The areas where have probable effective rainfall of 401 to 500mm, are fourteen places, which is about 100mm less than mean effective rainfall in each area, and that comes 67 percents of distribution. 11. A particular year can not be appointed as once -in-10 year drought in the same year as a whole in the basin of Geum River. 12. The basin of Geum River, s/S being 0.53 to 0.74, has relatively proper conditions in the aspect of water resources.

  • PDF

Hydrological Stability Analysis of the Existing Soyanggang Multipurpose Dam

  • Ko, Seok-Ku;Shin, Yong-Lo
    • Korean Journal of Hydrosciences
    • /
    • v.7
    • /
    • pp.37-49
    • /
    • 1996
  • This study aims at suggesting an alternative to improve flood controling capacity according to the cument design criteria for the existing Soyanggang Multi-purpose Dam which was constructed 20 years ago as the largest dam in Korea. The peak inflow of the adopted probable maximum flood (PMF) at the time of construction was 13,500 $m^3$/s. However, the newly estimated peak inflow of the PMF is 18,000 $m^3$/s which is 1.34 times bigger than the original one. This is considered to be due to the accumulation of the reliable flood and storm event records after construction, and due to the increasing tendency of the local flood peaks according to the influence of world-wide weather change. The new estimation of the probable maximum precipitation (PMP) was based on the hydro-meteorological method suggested by the guideline of the World Meteorological Organization (WMO). The unit hydrograph which was applied for the estimation of PMF was derived through linear programming algorithm by minimizing the sum of absolute deviations of the calculated and recorded flood hydrographs. In order to adopt the newly estimated PMF as a design flood, following four alternatives were compared : (1) allocation of more flood control space by lowering the normal high water level, (2) construction of a new spillway in addition to the existing spillway, (3) construction of a new dam which has relevant flood control storage at the upstream of the Soyanggang dam, (4) raising the existing dam crest. The preliminary evaluation of these alternatives resulted in that the second alternative is most economic and feasible. So as to stably cope with the newly estimated PMF by meeting all the current functions of the multipurpose dam, a detailed study of an additional spillway tunnel has to be followed.

  • PDF

Basin-scale PMF Estimation Method by considering Spatio-temporal Characteristics (시·공간성을 고려한 유역기반의 PMF 산정)

  • Kim, Youngkyu;Kim, Yeonsu;Yu, Wansik;Oh, Sungryul;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.139-139
    • /
    • 2016
  • 가능최대홍수량(Probable Maximum Flood, PMF)이란 대규모 수공구조물을 설계하고자 할 때 막대한 경제적 손실 및 인명피해 등을 막기 위해 기준으로 삼는 설계홍수량이며, 통계학적으로는 약 10,000년 빈도에 해당된다. 우리나라의 호우 특성은 방위, 진행방향 및 위에 따른 해석이 매우 복잡하여 강우를 정형화하기 어렵다. Kim and Won(2004)은 이동성 호우의 경우 강우의 깊이-면적-지속기간(Rainfall Depth-Area-Duration)의 분석결과에서 상당한 오차를 야기하는 문제점을 지닌다고 주장하였다. 따라서 오차를 포함한 DAD의 산정결과는 가능최대강수량(Probable Maximum Precipitation, PMP) 및 가능최대홍수량 산정에도 영향을 미치기 때문에 정확도 높은 DAD 분석을 통한 PMF 산정이 요구된다. 본 연구에서는 유역을 선정하고 각 지점의 시계열 강우 자료를 활용하여 공간분포화한 강우자료에 격자기반의 자동 강우장 탐색기법을 이용하여 DAD 분석을 실시하였다. 기존의 PMP 산정방법에서는 한반도 전역에서 발생했던 130 mm이상의 호우사상을 선정한 후에 각 호우의 범위에 있는 우량관측소의 강우자료를 이용하여 PMP를 산정한다. 그렇기 때문에 만약 상대적으로 긴 지속기간의 경우 호우의 범위가 우리나라 전역을 포함할 가능성이 크기 때문에 PMP 산정방법은 복잡하고, 기상이변이 잦지 않는 지역에서 산정된 PMP를 이용하여 PMF를 산정할 경우, 유역의 특성을 반영하지 않았기 때문에 과대산정의 우려가 있다. 이에 따라 본 연구에서는 먼저 연구대상유역을 선정한 뒤, 유역 내에 발생했던 호우경보와 호우주의보를 기준으로 호우사상을 선정하여 DAD 분석 후 PMP를 산정하였다. 그 후, 강우-유출관계를 파악하여 PMF를 산정하였다.

  • PDF