• Title/Summary/Keyword: probability rainfall intensity

Search Result 61, Processing Time 0.022 seconds

Derivation of Probable Rainfall Intensity Formula at Masan District (마산지방 확률강우강도식의 유도)

  • Kim, Ji-Hong;Bae, Deg-Hyo
    • Journal of Wetlands Research
    • /
    • v.2 no.1
    • /
    • pp.49-58
    • /
    • 2000
  • The frequency analysis of annual maximum rainfall data and the derivation of probable rainfall intensity formula at Masan station are performed in this study. Based on the eight different rainfall duration data from 10 minutes to 24 hours, eight types of probability distribution (Gamma, Lognormal, Log-Pearson type III, GEV, Gumbel, Log-Gumbel, Weibull, and Wakeby distributions), three types of parameter estimation scheme (moment, maximum likelihood and probability weighted methods) and three types of goodness-of-fit test (${\chi}^2$, Kolmogorov-Smirnov and Cramer von Mises tests) were considered to find an appropriate probability distribution at Masan station. The Lognormal-2 distribution was selected and the probable rainfall intensity formula was derived by regression analysis. The derived formula can be used for estimating rainfall quantiles of the Masan vicinity areas with convenience and reliability in practice.

  • PDF

A Study on the Discharge Characteristics of Pollutant Loads in Small Watershed According to the Probability Rainfall (확률 강우에 따른 홍수 전후의 소유역 오염부하량 배출특성 연구)

  • Kim, Phil-Sik;Kim, Sun-Joo;Shim, Jae-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.75-83
    • /
    • 2010
  • The objective of this paper is to study the discharge characteristics of pollutant loads in small watershed according to probability rainfall using the Hydrologic Simulation Program-Fortran (WinHSPF). The subwatershed of Gosam reservoir watershed in Gyeonggido province was simulated and the probability rainfall of study area was estimated by recurrence interval and duration. The probability rainfalls are 156.5, 205.9 and 277.4 mm for 6 hrs, 12 hrs and 24 hrs in 10 year frequency, and each probability rainfalls is distributed by Huff's 4th quantiles method and applied to HSPF. The pollutant loads were high for initial rainfall. The concentrations of TN, TP and BOD were high as rainfall duration is shorter and rainfall intensity is higher.

The Regional Rainfall Intensity Formula Development Considering Climate Change of Gimhae City (기후변화를 고려한 김해시의 지역별 확률강우강도식 개발)

  • Woo, Sun-Bong;Park, Jong-Kil;Choi, Sun-Ho;Yoon, Jong-Sung
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1775-1790
    • /
    • 2014
  • The regional rainfall intensity formula for Gimhae in Gyeongsangnam-do province is developed in this study. The nine points of rainfall observations were selected. In order to demonstrate the accuracy and the versatility of the proposed rainfall intensity formula, three regions under the jurisdiction of the Meteorological Agency near Gimhae, namely Busan, Changwon, Miryang observatories were selected. The present formula can be effectively employed for various design of hydraulic structures in Gimhae area since it is divided into several refined regions.

Suggestion of Probable Rainfall Intensity Formula Considering the Pattern Change of Maximum Rainfall at Incheon City (최대강우 패턴 변화를 고려한 인천지방 확률강우강도식의 제안)

  • Han Man-Shin;Choi Gye-Woon;Chung Yeun-Jung;Ahn Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.6 s.167
    • /
    • pp.521-531
    • /
    • 2006
  • The formula was proposed through the examination of probability rainfall intensity formula used in Incheon based upon recent occurrences of heavy rain and extraordinary storms. Random-time maximum annual rainfalls were estimated for durations from ten minutes to twenty-four hours from the data by Korea Meteorological Administration. Eleven types of probability distribution are considered to estimate probable rainfall depths for different storm durations at Incheon city. Three goodness-of-fit tests including Chi-square, Kolmogorov-Smirmov and framer Von Misses were used to analyze the tendency of recent rainfall. Considering maximum rainfall occurred, General Extreme Value(GEV) distribution was chosen as the appropriate probability distribution. Five types of probability rainfall formulas including Talbot type, Sherman type, Japanese type, unified type I and unified type II are considered to determine the best type for rainfall intensity at Incheon. The formula was determined considering the time of concentration of sewer system and river at Incheon city. Unified type I was chosen for its accuracy and was proposed to represent rainfall intensity of Incheon district.

Derivation of Rainfall Intensity-Duration-Frequency Equation Based on the Approproate Probability Distribution (지속기간별 강우자료의 적정분포형 선정을 통한 확률강우강도식의 유도)

  • Heo, Jun-Haeng;Kim, Gyeong-Deok;Han, Jeong-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.247-254
    • /
    • 1999
  • The frequency analyses of annual maximum rainfall data for 22 rainfall gauging stations is Korea were performed. The method of moments (MOM), maximum likelihood (ML), and probability weighted moments (PWM) were used in parameter estimation. The GEV distribution was selected as an appropriate model for annual maximum rainfall data based on parameter validity condition, graphical analysis, separation effect, and goodness of fit tests. For the selected GEV model, spatial analysis was performed and rainfall intensity-duration-frequency equation was derived by using linearization technique. The derived rainfall intensity-duration-frequency equation can be used for estimating rainfall quantiles of the selected stations with convenience and reliability in practice.

  • PDF

Derivation of Probable Rainfall Intensity Formulas at Inchon District (인천지방 확률강우강도식의 유도)

  • Choe, Gye-Un;An, Tae-Jin;Gwon, Yeong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.263-276
    • /
    • 2000
  • This paper is to derive the probable rainfall depths and the probable rainfall intensity formulas for Inchon Metropolitan district. The annual maximum rainfall data from 10 min. to 6 hours have been collected from the Inchon weather station. Eleven types of probability distribution are considered to estimate probable rainfall depths for 12 different storm durations at the Inchon Metropolitan district. Three tests including Chi-square, Kolmogorov-Smimov and Cramer Von Mises with the graphical analysis are adopted to select the best probability distribution. The probable rainfall intensity formulas are then determined by the least squares method using the trial and error approach. Five types of Talbot type, Sherman type, Japanese type, Unified type I, and Unified type II are considered to determine the best type for the Inchon rainfall intensity. The root mean squared errors are computed to compare the accuracy from the derived formulas. It has been suggested that the probable rainfall intensities having Unified type I for the short term duration should be the most reliable formulas by considering the root mean squared errors and the difference between computed probable rainfall depth and estimated probable rainfall depth.

  • PDF

A Derivation of Rainfall Intensity-Duration-Frequency Relationship for the Design of Urban Drainage System in Korea (우리나라 도시배수시스템 설계를 위한 확률강우강도식의 유도)

  • Lee, Jae-Jun;Lee, Jeong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.4
    • /
    • pp.403-415
    • /
    • 1999
  • This study is to derive the rainfall intensity formula based on the representative probability distribution in Korea. The 11 probability distributions which has been widely used in hydrologic frequency analysis are applied to the annual maximum rainfall. The parameters of each probability distribution are estimated by method of moments, maximum likelihood method and method of probability weighted moments. Four tests such as $x^2$-test, Kolmogorv-Smirnov test, difference test and modified difference test are used to determine the goodness of fit of the distributions. The homogeneous tests (Mann-Whitney U test, Kruskal-Wallis one-way analysis of variance of nonparametric test) are applied to find the stations with rainfall homogeneity. The results of homogeneous tests show that there is no representative appropriate distribution for the whole duration in Korea. The whole region could be divided into five zones for 12-durations. The representative probability distribution of each divided zone for 12-durations was determined. The GEV distribution for I,II,V zones and the 3-parameter Weibull distribution for III,IV zones were determined as the representative probability distribution. The rainfall were obtained from representative probability distribution for the selected return periods. Rainfall intensity formula was determined by linearization technique for the rainfall.

  • PDF

Estimation Model for Optimum Probabilistic Rainfall Intensity on Hydrological Area - With Special Reference to Chonnam, Buk and Kyoungnam, Buk Area - (수문지역별 최적확률강우강도추정모형의 재정립 -영.호남 지역을 중심으로 -)

  • 엄병헌;박종화;한국헌
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.2
    • /
    • pp.108-122
    • /
    • 1996
  • This study was to introduced estimation model for optimum probabilistic rainfall intensity on hydrological area. Originally, probabilistic rainfall intensity formula have been characterized different coefficient of formula and model following watersheds. But recently in korea rainfall intensity formula does not use unionize applyment standard between administration and district. And mingle use planning formula with not assumption model. Following the number of year hydrological duration adjust areal index. But, with adjusting formula applyment was without systematic conduct. This study perceive the point as following : 1) Use method of excess probability of Iwai to calculate survey rainfall intensity value. 2) And, use method of least squares to calculate areal coefficient for a unit of 157 rain gauge station. And, use areal coefficient was introduced new probabilistic rainfall intensity formula for each rain gauge station. 3) And, use new probabilistic rainfall intensity formula to adjust a unit of fourteen duration-a unit of fifteen year probabilistic rainfall intensity. 4) The above survey value compared with adjustment value. And use three theory of error(absolute mean error, squares mean error, relative error ratio) to choice optimum probabilistic rainfall intensity formula for a unit of 157 rain gauge station.

  • PDF

Determination of Probable Rainfall Intensity Formulas for Designing Storm Sewer Systems at Incheon District (우수거 설계를 위한 인천지방에서의 확률강우강도식의 산정)

  • Ahn, Tae-Jin;Kim, Kyung-Sub
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.3
    • /
    • pp.99-106
    • /
    • 1998
  • This paper presents a procedure for determining the design rainfall depth and the design rainfall intensity at Incheon city area in Korea. In this study the eight probability distributions are considered to estimate the probable rainfall depths for 11 different durations. The Kolmogorov - Smirnov test and the Chi-square test are adopted to test each distribution. The probable rainfall intensity formulas are then determined by i) the least squares (LS) method, ii) the least median squares (LMS) method, iii) the reweighted least squares method based on the LMS (RLS), and iv) the constrained regression (CR) model. The Talbot, the Sherman, the Japanese, and the Unified type are considered to determine the best type for the Incheon station. The root mean squared (RMS) errors are computed to test the formulas derived by four methods. It is found that the Unified type is the most reliable and that all methods presented herein are acceptable for determining the coefficients of rainfall intensity formulas from an engineering point of view.

  • PDF

Rainfall Intensity Estimation with Cloud Type using Satellite Data

  • Jee, Joon-Bum;Lee, Kyu-Tae
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.660-663
    • /
    • 2006
  • Rainfall estimation is important to weather forecast, flood control, hydrological plan. The empirical and statistical methods by measured data(surface rain gauge, rainfall radar, Satellite) is commonly used for rainfall estimation. In this study, the rainfall intensity for East Asia region was estimated using the empirical relationship between SSM/I data of DMSP satellite and brightness temperature of GEOS-9(10.7${\mu}m$) with cloud types(ISCCP and MSG classification). And the empirical formula for rainfall estimation was produced by PMM (Probability Matching Method).

  • PDF