• Title/Summary/Keyword: probability of information transmission

Search Result 489, Processing Time 0.019 seconds

A dynamic transmission reservation protocol with non-zero tunig delay for high-speed mutliwavelength networks (고속 광통신망에서 스위칭 오버헤드를 고려한 동적 전송 예약 프로토콜)

  • 최형윤;이호숙;김영천
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.5
    • /
    • pp.25-34
    • /
    • 1997
  • Relatively slow tuning speed of optical device causes the unwanted delay in high speed single-hop multiwavelength networks. To lessen the overhead, we present a channel access protocol with dynamjic message scheduling. Th eframe structure of proposed protocol adopts hybrid multiaccess scheme in which WDMA is used as a basic multiaccess technique and TDMA is used to provide subchannels within a wavelength band. This architecture has two merits : the network extention is not limited by available number of wavelengths, and the transmission delay caused by optical device tuning time can to minimize the number of tunings. It schedules messages that require same wavelength channels sequencely, so the total transmission delay is reduced by decreasement of wavelength changes. The performance of proposed protocol is evaluated through numerical analysis based on probability and queueing theory. The peformance of proposed protocol is evaluated through numerical analysis based on probability and queueing theory. The numeric results show that the peformance of proposed protocol is better than that of previous one.

  • PDF

Adaptive Transmission Scheme According to Vehicle Density in IEEE 802.11p MAC Protocol (IEEE 802.11p MAC 프로토콜에서 차량밀도에 따른 적응전송기법)

  • Woo, Ri-Na-Ra;Han, Dong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.4
    • /
    • pp.53-58
    • /
    • 2012
  • The roadside unit (RSU) collects vehicle information from vehicles in the intelligent transportation system (ITS). The vehicle density on the road within the communication range of a RSU is a time varying parameter. The higher the vehicle density, the more vehicle information can be collected. Therefore, the probability of packet collision will be raised. In this paper, an adaptive transmission scheme is proposed to improve the probability of packet reception rate by changing the data rate and transmission period according to the vehicle density. The performance of IEEE 802.11p MAC protocol that is a standard for vehicular communications is evaulated in terms of the vehicle density with the ns-2,33 simulator.

Performance Improvement of DCF through Transmission Control (전송제어를 통한 DCF의 성능 향상)

  • Park, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1811-1813
    • /
    • 2016
  • DCF (Distributed Coordination Function) resolves the channel contention problem in a distributed manner by forcing nodes to randomly choose a waiting time in a contention window. However, since the size of a contention is limited, the collision probability increases with the number of sending nodes. To resolve the problem, in this paper, we propose a transmission control method based on the minority game (MG). Each node can determine autonomously whether to send or not without message exchanges with other nodes to maximize its profit. Through simulation studies, we verify that the proposed method can improves the performance of DCF in terms of collision probability in a congestion situation.

Analysis of Call Admission Control for Joint Transmission-Based LTE-Advanced Systems (Joint Transmission 기반의 LTE-Advanced 시스템에 대한 호 수락 제어의 성능 분석)

  • Kim, Seung-Yeon;Lee, Hyong-Yoo;Ryu, Seung-Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.7
    • /
    • pp.535-542
    • /
    • 2013
  • Coordinated multi-point transmission (CoMP) is considered to be a promising technique to improve the throughput for LTE-Advanced systems. One important approach for CoMP is Joint Transmission (JT). However, the analytical model of JT has not been fully studied, as user equipments (UEs) receiving the desired signals from an adjacent base station (BS) as well as serving BS, or only serving BS were not distinguished. We derive a new analytical model to describe the call admission control in JT based systems. The performance measures of interest are the call blocking probability, and resource utilization. Furthermore, we compare the performance of JT-based systems and non-JT- based systems. The analytical results are in reasonable agreement with the simulation results.

A New Physical Layer Transmission Scheme for LPI and High Throughput in the Cooperative SC-FDMA System

  • Li, Yingshan;Wu, Chao;Sun, Dongyan;Xia, Junli;Ryu, Heung-Gyoon
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.457-463
    • /
    • 2013
  • In recent days, cooperative diversity and communication security become important research issues for wireless communications. In this paper, to achieve low probability of interception (LPI) and high throughput in the cooperative single-carrier frequency division multiple access (SC-FDMA) system, a new physical layer transmission scheme is proposed, where a new encryption algorithm is applied and adaptive modulation is further considered based on channel state information (CSI). By doing so, neither relay node nor eavesdropper can intercept the information signals transmitted from user terminal (UT). Simulation results show above new physical layer transmission scheme brings in high transmission safety and secrecy rate. Furthermore, by applying adaptive modulation and coding (AMC) technique according to CSI, transmission throughput can be increased significantly. Additionally, low peak-to-average power ratio (PAPR) characteristic can still be remained due to the uniform distribution of random coefficients used for encryption algorithm.

Topology-Aware Fanout Set Division Scheme for QoS-Guaranteed Multicast Transmission

  • Kim, Kyungmin;Lee, Jaiyong
    • Journal of Communications and Networks
    • /
    • v.15 no.6
    • /
    • pp.614-634
    • /
    • 2013
  • The proliferation of real-time multimedia services requires huge amounts of data transactions demanding strict quality-of-service (QoS) guarantees. Multicast transmission is a promising technique because of its efficient network resource utilization. However, high head-of-line (HOL) blocking probability and lack of service-specific QoS control should be addressed for practical implementations of multicast networks. In this paper, a topology aware fanout set division (TAFD) scheme is proposed to resolve these problems. The proposed scheme is composed of two techniques that reduce HOL blocking probability and expedite packet delivery for large-delay branches regarding multicast tree topology. Since management of global topology information is not necessary, scalability of the proposed scheme is guaranteed. Mathematical analysis investigates effects of the proposed scheme and derives optimal operational parameters. The evaluation results show that the TAFD scheme achieves significant delay reduction and satisfies required delay bounds on various multicast networks.

Priority-based Reservation Code Multiple Access (P-RCMA) Protocol (우선순위 기반의 예약 코드 다중 접속 (P-RCMA) 프로토콜)

  • 정의훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2A
    • /
    • pp.187-194
    • /
    • 2004
  • We propose priority-based reservation code multiple access (P-RCMA) which can enhance voice traffic quality of the previous RCMA. The proposed protocol maintains two power levels and consider traffic characteristics in contending shared available codes to transmit packets. P-RCMA gives priority to the voice request packets rather than data packets by capture effect at the receiver part of base station. We show numerical results from EPA (equilibrium point analysis) analysis and simulation study in terms of voice packet dropping probability and average data packet transmission delay.

Physical Layer Security in Underlay CCRNs with Fixed Transmit Power

  • Wang, Songqing;Xu, Xiaoming;Yang, Weiwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.260-279
    • /
    • 2015
  • In this paper, we investigate physical layer security for multiple decode-and-forward (DF) relaying underlay cognitive radio networks (CRNs) with fixed transmit power at the secondary network against passive eavesdropping attacks. We propose a simple relay selection scheme to improve wireless transmission security based on the instantaneous channel information of all legitimate users and the statistical information about the eavesdropper channels. The closed-form expressions of the probability of non-zero secrecy capacity and the secrecy outage probability (SOP) are derived over independent and non-identically distributed Rayleigh fading environments. Furthermore, we conduct the asymptotic analysis to evaluate the secrecy diversity order performance and prove that full diversity is achieved by using the proposed relay selection. Finally, numerical results are presented to verify the theoretical analysis and depict that primary interference constrain has a significant impact on the secure performance and a proper transmit power for the second transmitters is preferred to be energy-efficient and improve the secure performance.

Priority-Based Duplicate Burst Transmission Mechanism in Optical Burst Switching Networks

  • Um, Tai-Won;Vu, Hai-L.;Choi, Jun-Kyun;Ryu, Won
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.164-166
    • /
    • 2008
  • This paper proposes a priority-based duplicate burst transmission mechanism in an optical burst switching network to enhance the probability of successful reception of bursts. The performance of the proposed mechanism is evaluated by NS2 simulations. Our results show that the burst loss rate is improved especially under light traffic loads.

  • PDF

Optimal Power Allocation and Outage Analysis for Cognitive MIMO Full Duplex Relay Network Based on Orthogonal Space-Time Block Codes

  • Liu, Jia;Kang, GuiXia;Zhu, Ying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.924-944
    • /
    • 2014
  • This paper investigates the power allocation and outage performance of MIMO full-duplex relaying (MFDR), based on orthogonal space-time block codes (OSTBC), in cognitive radio systems. OSTBC transmission is used as a simple means to achieve multi-antenna diversity gain. Cognitive MFDR systems not only have the advantage of increasing spectral efficiency through spectrum sharing, but they can also extend coverage through the use of relays. In cognitive MFDR systems, the primary user experiences interference from the secondary source and relay simultaneously, owing to full duplexing. It is therefore necessary to optimize the transmission powers at the secondary source and relay. In this paper, we propose an optimal power allocation (OPA) scheme based on minimizing the outage probability in cognitive MFDR systems. We also analyse the outage probability of the secondary user in noise-limited and interference-limited environments in Nakagami-m fading channels. Simulation results show that the proposed schemes achieve performance improvements in terms of reducing outage probability.