• Title/Summary/Keyword: probabilistic technique

Search Result 354, Processing Time 0.026 seconds

Reliability-based Failure Cause Assessment of Collapsed Bridge during Construction

  • Cho, Hyo-Nam;Choi, Hyun-Ho;Lee, Sang-Yoon;Sun, Jong-Wan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.181-186
    • /
    • 2003
  • There are many uncertainties in structural failures or structures, so probabilistic failure cause assessment should be performed in order to consider the uncertainties. However, in many cases of forensic engineering, the failure cause assessments are performed by deterministic approach though number of uncertainties are existed in the failures or structures. Thus, deterministic approach may have possibility for leading to unreasonable and unrealistic failure cause assessment due to ignorance of the uncertainties. Therefore, probabilistic approach is needed to complement the shortcoming of deterministic approach and to perform the more reasonable and realistic failure cause assessment. In this study, reliability-based failure cause assessment (reliability based forensic engineering) is performed, which can incorporate uncertainties in failures and structures. For more practical application, the modified ETA technique is proposed, which automatically generates the defected structural model, performs structural analysis and reliability analysis, and calculates the failure probabilities of the failure events and the occurrence probabilities of the failure scenarios. Also, for more precise reliability analysis, uncertainties are estimated more reasonably by using bayesian approach based on the experimental laboratory testing data in forensic report.

  • PDF

Evaluation of Reliability for the Tensile Strength of the Flexible Pavement System (아스팔트 포장도로(鋪裝道路)의 인장강도(引張强度)에 대한 신뢰도(信賴度) 고찰(考察))

  • Lee, Bong Hak;Kim, Kwang Woo;Yun, Kyeong Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.1-11
    • /
    • 1988
  • The flexible highway pavement is a layered structure. The safety of the pavement is a function of the load induced by traffic and the layer strength of asphaltic concrete mixture. Therefore, the probabilistic approach was applied to the pavement system to evaluate the reliability. Monte Carlo simulation technique was used for the reliability study. Data used were colleted from the field or literature. A critical tensile strength for each layer was estimated based on a target reliability from the simulation. The critical strength was evaluated by comparing the strengths with the actual surface distress. The result shows that the critical strength estimated in the probabilistic approach is valid for the current highway condition.

  • PDF

A Probabilistic Filtering Technique for Improving the Efficiency of Local Search (국지적 탐색의 효율향상을 위한 확률적 여과 기법)

  • Kang, Byoung-Ho;Ryu, Kwang-Ryel
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.3
    • /
    • pp.246-254
    • /
    • 2007
  • Local search algorithms start from a certain candidate solution and probe its neighborhood to find ones with improved quality. This paper proposes a method of probabilistically filtering out bad-looking neighbors based on a simple low-cost preliminary evaluation heuristics. The probabilistic filtering enables us to save time wasted on fully evaluating those solutions that will eventually be trashed, and thus improves the search efficiency by allowing us to spend more time on examining better looking solutions. Experiments with two large-scaled real-world problems, which are a traffic signal control problem in traffic network and a load balancing problem in production scheduling, have shown that the proposed method finds better quality solutions, given the same amount of CPU time.

An Experimental Study on Fatigue Durability for Composite Torque Link of Helicopter Landing Gear (헬리콥터 착륙장치 복합재 토크링크 피로내구성에 대한 실험적 연구)

  • Kwon, Jung-Ho;Kang, Dae-Hwan
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.26-31
    • /
    • 2010
  • This research work contributes to a study for the procedure and methodology to assess the fatigue durability for a composite torque link for helicopter landing gear, which was newly developed and fabricated by the resin transfer moulding technique to interchange with metal component. The simulated load spectrum anticipated to be applied to the torque link during its operation life was generated using an advanced method of probabilistic random process, and the fatigue durability was evaluated by the residual strength degradation approach on the basis of material test data. The full scale fatigue test was performed and compared with the analysis results.

Applied methods for seismic assessment of scoured bridges: a review with case studies

  • Guo, Xuan;Badroddin, Mostafa;Chen, ZhiQiang
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.497-507
    • /
    • 2017
  • Flooding induced scour has been long recognized as a major hazard to river-crossing bridges. Many studies in recent years have attempted to evaluate the effects of scour on the seismic performance of bridges, and probabilistic frameworks are usually adopted. However, direct and straightforward insight about how foundation scour affects bridges as a type of soil-foundation-structure system is usually understated. In this paper, we provide a comprehensive review of applied methods centering around seismic assessment of scoured bridges considering soil-foundation-structure interaction. When introducing these applied analysis and modeling methods, a simple bridge model is provided to demonstrate the use of these methods as a case study. Particularly, we propose the use of nonlinear modal pushover analysis as a rapid technique to model scoured bridge systems, and numerical validation and application of this procedure are given using the simple bridge model. All methods reviewed in this paper can serve as baseline components for performing probabilistic vulnerability or risk assessment for any river-crossing bridge system subject to flood-induced scour and earthquakes.

A Computational Interactive Approach to Multi-agent Motion Planning

  • Ji, Sang-Hoon;Choi, Jeong-Sik;Lee, Beom-Hee
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.295-306
    • /
    • 2007
  • It is well known that mathematical solutions for multi-agent planning problems are very difficult to obtain due to the complexity of mutual interactions among multi-agents. Most of the past research results are thus based on the probabilistic completeness. However, the practicality and effectiveness of the solution from the probabilistic completeness is significantly reduced by heavy computational burden. In this paper, we propose a practically applicable solution technique for multi-agent planning problems, which assures a reasonable computation time and a real world application for more than 3 multi-agents, for the case of general shaped paths in agent movement. First, to reduce the computation time, an extended collision map is developed and utilized for detecting potential collisions and obtaining collision-free solutions for multi-agents. Second, a priority for multi-agents is considered for successive and interactive modifications of the agent movements with lower priority. Various solutions using speed reduction and time delay of the relevant agents are investigated and compared in terms of the computation time. A practical implementation is finally provided for three different types of agents to emphasize the effectiveness of the proposed interactive approach to multi-agent planning problems.

Probabilistic Assessment of Voltage Stability Margin in Presence of Wind Speed Correlation

  • Li, Hongxin;Cai, DeFu;Li, Yinhong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.719-728
    • /
    • 2013
  • Probabilistic assessment of voltage stability margin (VSM) with existence of correlated wind speeds is investigated. Nataf transformation is adopted to establish wind speed correlation (WSC) model. Based on the saddle-node bifurcation transversality condition equations and Monte Carlo simulation technique, probability distribution of VSM is determined. With correlation coefficients range low to high value, the effect of WSC on VSM is studied. In addition, two risk indexes are proposed and the possible threat caused by WSC is evaluated from the viewpoint of risk analysis. Experimental results show that the presence of correlated wind speeds is harmful to safe and stable operation of a power system as far as voltage stability is concerned. The achievement of this paper gives a detailed elaboration about the influence of WSC on voltage stability and provides a potentially effective analytical tool for modern power system with large-scale wind power sources integration.

A Study on Reliability Estimation of Sequential-ordered Multiple Failure Modes in Nuclear System (원자력시스템에서 순차적 다중실패상태의 신뢰도 평가 방법에 관한 고찰)

  • Han, Seok-Jung
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.7-13
    • /
    • 2011
  • A study on reliability estimation of sequential-ordered multiple failure modes, which are sequentially ordered between failure modes in a considering system, was performed. Especially, an approach to estimate the probabilities of failure modes has been proposed under an assumption that failure modes are mutually exclusive and sequentially ordered by only a critical variable. A feasibility of the proposed approach were studied by a practical example, which is a reliability estimation of passive safety systems for a probabilistic safety assessment(PSA) of a very high temperature reactor(VHTR) that is under development as a future nuclear system with enhanced safety features. It is difficult to define a robust failure state of this nuclear system because of its enhanced radiation release characteristics, so the new approach is a useful concept to estimate not only its safety but also a PSA. A feasibility study applied two failure modes(e.g., small and large release of radioactive materials) with considering the integrated behavior of this nuclear system. It is expected that the multiple release states for a practical estimation can be easily extended to the aforementioned example. It was found out that the proposed approach was a useful technique to cover the unfavorable features of this nuclear system as to performing a VHTR PSA.

Evaluation of effectiveness of fault-tolerant techniques in a digital instrumentation and control system with a fault injection experiment

  • Kim, Man Cheol;Seo, Jeongil;Jung, Wondea;Choi, Jong Gyun;Kang, Hyun Gook;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.692-701
    • /
    • 2019
  • Recently, instrumentation and control (I&C) systems in nuclear power plants have undergone digitalization. Owing to the unique characteristics of digital I&C systems, the reliability analysis of digital systems has become an important element of probabilistic safety assessment (PSA). In a reliability analysis of digital systems, fault-tolerant techniques and their effectiveness must be considered. A fault injection experiment was performed on a safety-critical digital I&C system developed for nuclear power plants to evaluate the effectiveness of fault-tolerant techniques implemented in the target system. A software-implemented fault injection in which faults were injected into the memory area was used based on the assumption that all faults in the target system will be reflected in the faults in the memory. To reduce the number of required fault injection experiments, the memory assigned to the target software was analyzed. In addition, to observe the effect of the fault detection coverage of fault-tolerant techniques, a PSA model was developed. The analysis of the experimental result also can be used to identify weak points of fault-tolerant techniques for capability improvement of fault-tolerant techniques

Simulation on Optimum Repairing Number of Carbonated RC Structure Based on Probabilistic Approach (확률론을 고려한 탄산화된 RC 구조물의 최적 보수시기 해석)

  • Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.230-238
    • /
    • 2017
  • Carbonation is a representative deterioration for underground structure, which causes additional repair for service life. This study proposes a simplified equation for optimum repair timing without complicated probability calculation, considering initial and repair conditions For the work, initial service life, extended service life through repair, and their COVs(Coefficient of Variation) are considered, and the periods which can reduce number of repair are evaluated. Assuming the two service lives to be independent, the repair timings are derived from 10 to 50 years based on the probabilistic method, and the regression analysis technique for optimum repairing timing is proposed. Decreasing COV has insignificant effect on reducing repairing number but shows a governing effect on changes in probability near the critical repairing stage. The extension of service life through repairing is evaluated to be a critical parameter for reducing repairing number. The proposed technique can be efficiently used for maintenance strategy with actual COV of initial and additional service life due to repairing.