• Title/Summary/Keyword: probabilistic sensitivity

Search Result 216, Processing Time 0.038 seconds

Protectability Evaluation of Distance Relay based on a Probabilistic Method for Transmission Network (오차확률 기반 송전계통 보호계전기 보호도 평가방법 연구)

  • Zhang, Wen-Hao;Choi, Myeon-Song;Lee, Seung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.286_287
    • /
    • 2009
  • In this paper, the protectability of distance relay is furtherly researched. Based on the probabilistic modeling of the measurement errors, the protectability of three zones is presented in detail by considering their different protection aims denoted by sensitivity and selectivity. The optimal setting for the each zone can be obtained to provide a reference for the practical application.

  • PDF

Statistical Analysis of Initial Behavior of a Vertically-launched Missile from Surface Ship (수상함에서 발사된 수직 발사 유도탄 초기 거동의 통계적 해석)

  • Kim, Kyung-Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.889-895
    • /
    • 2012
  • A vertical launching system(VLS) is a system for holding and firing missiles on surface ships. When a missile is launched in VLS, relative motion between canister and missile and drag force induced by wind can cause initial unstability of a missile. Thus dynamic analysis of initial behavior of vertically launched missile should be performed to prevent collision with any structure of a ship. In this study, dynamic analyses of initial behavior of vertically launched missile are performed using Monte-Carlo simulation, which relys on random sampling and probabilistic distribution of variables. Each parameter related with dynamic behavior of a missile is modeled with probability variables and Recurdyn, a commercial software for multi body dynamic analysis, is used to perform Monte-Carlo simulation. As a result, initial behavior of a missile is evaluated with respect to various performance indexes in a probabilistic sense and sensitivity of the each parameters is calculated.

Protectability Evaluation of Distance Relay based on a Probabilistic Method for Transmission Network (오차확률 가반 송전계통 보호계전기 보호도 평가방법 연구)

  • Zhang, Wen-Hao;Choi, Myeon-Song;Lee, Seung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.29-30
    • /
    • 2008
  • This paper defines a concept of "protectability" for the performance evaluation of distance relay considering its sensitivity and selectivity. The paper starts from the probabilistic modeling of the errors, and based on this model, a detailed explanation of protectability calculation for each zone of the distance relay is presented. An effect of the Weighting Rate and the Measurement Deviation on the protectability evaluation is also given. By considering this effect, the optimization of relay setting can be realized. The proposed method is applied to a typical model system to show its effectiveness.

  • PDF

A Quantitative Study on Important Factors of the PSA of Safety-Critical Digital Systems

  • Kang, Hyun-Gook;Taeyong Sung
    • Nuclear Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.596-604
    • /
    • 2001
  • This paper quantitatively presents the effects of important factors of the probabilistic safety assessment (PSA) of safety-critical digital systems. The result which is quantified using fault tree analysis methodology shows that these factors remarkably affect the system safety. In this paper we list the factors which should be represented by the model for PSA. Based on the PSA experience, we select three important factors which are expected to dominate the system unavailability. They are the avoidance of common cause failure, the coverage of fault tolerant mechanisms and software failure probability. We Quantitatively demonstrate the effect of these three factors. The broader usage of digital equipment in nuclear power plants gives rise to the safety problems. Even though conventional PSA methods are immature for applying to microprocessor-based digital systems, practical needs force us to apply it because the result of PSA plays an important role in proving the safety of a designed system. We expect the analysis result to provide valuable feedback to the designers of digital safety- critical systems.

  • PDF

Deriving Ecological Protective Concentration of Cadmium for Korean Soil Environment

  • Lee, Woo-Mi;Nam, Sun-Hwa;An, Youn-Joo
    • Environmental Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.241-246
    • /
    • 2013
  • For effective and efficient environmental management, developed countries, such as the Netherlands, UK, Australia, Canada, and United States apply ecological risk assessment, and they have an autonomous risk assessment methodology to protect native receptors. In this study, soil ecological protective concentration (EPC) of cadmium in Korea was derived using Korean ecological risk assessment methodology. The soil EPC of cadmium was calculated using probabilistic ecological risk assessment based on species sensitivity distribution. The soil EPC was calculated according to land use for residential/agricultural and industrial/commercial purposes. The chronic soil EPCs for residential/agricultural and industrial/commercial lands were derived to be 1.58 and 9.60 mg/kg, respectively. These values were similar to soil EPC of European Commission, the Netherlands, UK, and Canada. However, these values were lower than the established Korean soil standard, because the current soil standard was based on human risk. Therefore, the impact on an ecosystem when establishing environmental standard should be considered.

Derivation of preliminary derived concentration guideline levels for surface soil at Kori Unit 1 by RESRAD probabilistic analysis

  • Byon, Jihyang;Park, Sangjune;Ahn, Seokyoung
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1289-1297
    • /
    • 2018
  • Preliminary surface soil Derived Concentration Guideline Levels (DCGLs) were derived conforming to the Multi-Agency Radiation Site Survey and Investigation Manual (MARSSIM) procedure for the site release and reuse of Kori Unit 1 in Korea. Based on the decommissioning experiences of the U.S. nuclear power plants, a suite of residual radionuclides was determined, and uncertainties contributed to the resultant dose by the input parameters were quantified via the sensitivity analysis of parameters. The peak of the mean dose was obtained via the probabilistic analysis of the RESRAD (RESidual RADioactivity)-ONSITE code. Consequently, $DCGL_w$ of Kori Unit 1 in accordance with two scenarios, industrial worker and residential farmer scenario, were derived and the results were compared respectively with other NPPs. It could be used as a basic guideline for establishing regulatory standards for reuse planning, designing the site characterization surveys and implementing final status survey (FSS).

Stochastic vibration analysis of functionally graded beams using artificial neural networks

  • Trinh, Minh-Chien;Jun, Hyungmin
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.529-543
    • /
    • 2021
  • Inevitable source-uncertainties in geometry configuration, boundary condition, and material properties may deviate the structural dynamics from its expected responses. This paper aims to examine the influence of these uncertainties on the vibration of functionally graded beams. Finite element procedures are presented for Timoshenko beams and utilized to generate reliable datasets. A prerequisite to the uncertainty quantification of the beam vibration using Monte Carlo simulation is generating large datasets, that require executing the numerical procedure many times leading to high computational cost. Utilizing artificial neural networks to model beam vibration can be a good approach. Initially, the optimal network for each beam configuration can be determined based on numerical performance and probabilistic criteria. Instead of executing thousands of times of the finite element procedure in stochastic analysis, these optimal networks serve as good alternatives to which the convergence of the Monte Carlo simulation, and the sensitivity and probabilistic vibration characteristics of each beam exposed to randomness are investigated. The simple procedure presented here is efficient to quantify the uncertainty of different stochastic behaviors of composite structures.

A Probabilistic Reliability Assessment of KEPCO Future System with Applied HTS-FCL (초전도 한류기를 적용한 한전미래계통의 확률론적 신뢰도 평가)

  • Kwon, Jung-Ji;Lee, Seung-Ryul;Yoon, Jae-Young;Choi, Jae-Seok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.3
    • /
    • pp.19-22
    • /
    • 2008
  • The power systems should be improved to reduce the number of black-out events occurring throughout the world. Quantitative evaluation of composite power system reliability is very important in a competitive electricity environment. The reason is that the successful operation of electric power systems under a deregulated electricity market depends on transmission system reliability management. This paper presents sensitivity analysis of probabilistic reliability indices of Korea power systems with checking application of HTS-FCL.

A probabilistic knowledge model for analyzing heart rate variability (심박수변이도 분석을 위한 확률적 지식기반 모형)

  • Son, Chang-Sik;Kang, Won-Seok;Choi, Rock-Hyun;Park, Hyoung-Seob;Han, Seongwook;Kim, Yoon-Nyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.3
    • /
    • pp.61-69
    • /
    • 2015
  • This study presents a probabilistic knowledge discovery method to interpret heart rate variability (HRV) based on time and frequency domain indexes, extracted using discrete wavelet transform. The knowledge induction algorithm was composed of two phases: rule generation and rule estimation. Firstly, a rule generation converts numerical attributes to intervals using ROC curve analysis and constructs a reduced ruleset by comparing consistency degree between attribute-value pairs with different decision values. Then, we estimated three measures such as rule support, confidence, and coverage to a probabilistic interpretation for each rule. To show the effectiveness of proposed model, we evaluated the statistical discriminant power of five rules (3 for atrial fibrillation, 1 for normal sinus rhythm, and 1 for both atrial fibrillation and normal sinus rhythm) generated using a data (n=58) collected from 1 channel wireless holter electrocardiogram (ECG), i.e., HeartCall$^{(R)}$, U-Heart Inc. The experimental result showed the performance of approximately 0.93 (93%) in terms of accuracy, sensitivity, specificity, and AUC measures, respectively.

A Probabilistic Safety Assessment of a Pyro-processed Waste Repository (A-KRS 처분 시스템 확률론적 안전성 평가)

  • Lee, Youn-Myoung;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.263-272
    • /
    • 2012
  • A GoldSim template program for a safety assessment of a hybrid-typed repository system, called A-KRS, in which two kinds of pyro-processed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyro-processing of PWR nuclear spent fuels are disposed of, has been developed. This program is ready both for a deterministic and probabilistic total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios. The A-KRS has been probabilistically assessed with 9 selected input parameters, each of which has its own statistical distribution for a normal release and transport scenario associated with nuclide release and transport in and around the repository. Probabilistic dose exposure rates to the farming exposure group have been evaluated. A sensitivity of 9 selected parameters to the result has also been investigated to see which parameter is more sensitive and important to the exposure rates.