• 제목/요약/키워드: probabilistic decision analysis

검색결과 112건 처리시간 0.023초

추계적 페트리넷을 통한 동적 환경에서의 지능적인 환경정보의 갱신 (Intelligent Update of Environment Model in Dynamic Environments through Generalized Stochastic Petri Net)

  • 박중태;이용주;송재복
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.181-183
    • /
    • 2006
  • This paper proposes an intelligent decision framework for update of the environment model using GSPN(generalized stochastic petri nets). The GSPN has several advantages over direct use of the Markov Process. The modeling, analysis, and performance evaluation are conducted on the mathematical basis. By adopting the probabilistic approach, our decision framework helps the robot to decide the time to update the map. The robot navigates autonomously for a long time in dynamic environments. Experimental results show that the proposed scheme is useful for service robots which work semi-permanently and improves dependability of navigation in dynamic environments.

  • PDF

Development of an earthquake-induced landslide risk assessment approach for nuclear power plants

  • Kwag, Shinyoung;Hahm, Daegi
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1372-1386
    • /
    • 2018
  • Despite recent advances in multi-hazard analysis, the complexity and inherent nature of such problems make quantification of the landslide effect in a probabilistic safety assessment (PSA) of NPPs challenging. Therefore, in this paper, a practical approach was presented for performing an earthquake-induced landslide PSA for NPPs subject to seismic hazard. To demonstrate the effectiveness of the proposed approach, it was applied to Korean typical NPP in Korea as a numerical example. The assessment result revealed the quantitative probabilistic effects of peripheral slope failure and subsequent run-out effect on the risk of core damage frequency (CDF) of a NPP during the earthquake event. Parametric studies were conducted to demonstrate how parameters for slope, and physical relation between the slope and NPP, changed the CDF risk of the NPP. Finally, based on these results, the effective strategies were suggested to mitigate the CDF risk to the NPP resulting from the vulnerabilities inherent in adjacent slopes. The proposed approach can be expected to provide an effective framework for performing the earthquake-induced landslide PSA and decision support to increase NPP safety.

ISSUES IN FORMULATING PERFORMANCE-BASED APPROACHES TO REGULATORY OVERSIGHT OF NUCLEAR POWER PLANTS

  • YOUNGBLOOD R. W.;KIM I. S.
    • Nuclear Engineering and Technology
    • /
    • 제37권3호
    • /
    • pp.231-244
    • /
    • 2005
  • In recent decades, significant effort has led to risk-informed improvements to regulation. Performance-based approaches also promise significant gains in efficiency (level of safety versus effort). However, significant work remains to be done before performance-based approaches realize their full potential in regulation of nuclear power plants. This paper reviews key concepts related to performance-based regulation, discusses some applications of performance-based approaches, and identifies issues that still need to be addressed. Realistic, experience-based models of licensee performance are still lacking; this makes it difficult to assess the prospective effectiveness of any given regulatory approach, in light of the performance issues that it will actually face. Also, while 'compliance' is an intuitively straightforward concept to apply within a prescriptive implementation, its analog in a performance-based approach remains unclear. An overarching theme of the paper is that formal methods of decision analysis are very helpful in developing appropriate regulatory approaches, especially performance-based ones; this theme is illustrated at several points.

확률.통계적 리스크분석을 활용한 인적재난 위험평가 기법 제안 (Probabilistic Risk Evaluation Method for Human-induced Disaster by Risk Curve Analysis)

  • 박소순
    • 한국방재학회 논문집
    • /
    • 제9권6호
    • /
    • pp.57-68
    • /
    • 2009
  • 최근 인적재난 발생의 불확실성에 대한 유연한 대처를 위해 확률 통계적 재난위험성 평가 및 위험관리 기술에 대한 필요성이 고조되고 있어 관련기술을 인적재난에 적용하기 위한 연구를 수행하였다. 먼저 재난위험성 평가 기법의 실효성, 경제성 및 지속가능한 시스템 구현을 위한 선제조건을 검토하였다. 이로부터 재난의 피해규모-발생확률 분포함수의 이론적 검토를 통해 확률 통계적인 재난위험 지표를 도출하고 재난안전(위험)도 평가에 활용함으로서 보다 간편한 정량적 재난위험도 평가기법을 개발하였기에 이를 소개한다. 또한 이를 활용하여 우리나라와 일본의 확률 통계적인 화재 안전유지 성능을 비교 분석하고 그 결과를 안전지수로 제시하였다. 향후 기존의 재난위험 평가기술과 융화 발전시켜 국내실정에 맞는 미래 재난 추정 및 예측 모델의 최적화 방안을 마련함으로써 지속적인 위험도 분석결과에 기반을 둔 합리적인 통합재난관리 방안 마련이 가능 할 것으로 기대된다.

A Combined Bulk Electric System Reliability Framework Using Adequacy and Static Security Indices

  • Billinton, Roy;Wangdee, Wijarn
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권4호
    • /
    • pp.414-422
    • /
    • 2006
  • Deterministic techniques have been applied in power system planning for many years and there is a growing interest in combining these techniques with probabilistic considerations to assess the increased system stress due to the restructured electricity environment. The overall reliability framework proposed in this paper incorporates the deterministic N-1 criterion in a probabilistic framework, and results in the joint inclusion of both adequacy and security considerations in system planning. The combined framework is achieved using system well-being analysis and traditional adequacy assessment. System well-being analysis is used to quantify the degree of N-1 security and N-1 insecurity in terms of probabilities and frequencies. Traditional adequacy assessment is Incorporated to quantify the magnitude of the severity and consequences associated with system failure. The concepts are illustrated by application to two test systems. The results based on the overall reliability analysis framework indicate that adequacy indices are adversely affected by a generation deficient environment and security indices are adversely affected by a transmission deficient environment. The combined adequacy and security framework presented in this paper can assist system planners to realize the overall benefits associated with system modifications based on the degree of adequacy and security, and therefore facilitate the decision making process.

콘크리트 구조물의 확률론적 탄산화 예측 모델 개발 및 내구성 해석 (Durability Analysis and Development of Probability-Based Carbonation Prediction Model in Concrete Structure)

  • 정현준
    • 대한토목학회논문집
    • /
    • 제30권4A호
    • /
    • pp.343-352
    • /
    • 2010
  • 최근에 탄산화 콘크리트 구조물의 정량적인 사용수명과 장기적인 성능을 확보하고 예측하기 위해서 확률론적인 내구성 해석 및 설계를 수행하는 연구가 많이 진행되고 있다. 이와 관련하여 콘크리트 구조물에 확률론적 내구성 설계 개념을 도입되고 있다. 본 논문에서는 탄산화 콘크리트 구조물의 통계적인 자료를 이용하여 Fick의 첫 번째 법칙에 근거한 탄산화 예측 모델에 적용하였으며, 이를 이용하여 확률론적 내구성 해석을 수행하였다. 이 예측모델에 관련된 설계변수인 $CO_2$ 확산계수, 대기중의 $CO_2$ 농도, $CO_2$ 흡착량, 시멘트 수화도 등의 영향을 검토하였다. 확률론에 기초한 탄산화 예측모델은 여러 환경에 위치한 콘크리트 구조물에 모니터링 자료를 이용하여 탄산화 깊이와 잔존수명을 예측하였다. 그 결과로 본 연구에서 합리적인 탄산화 예측모델을 이용한 적용 방법은 탄산화 콘크리트 구조물의 내구성 확보 및 구조물의 손상 개시시기를 예측하고 구조물을 유지 관리하기 위한 유연한 의사결정을 할 수 있을 것으로 판단된다.

Advanced Big Data Analysis, Artificial Intelligence & Communication Systems

  • Jeong, Young-Sik;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.1-6
    • /
    • 2019
  • Recently, big data and artificial intelligence (AI) based on communication systems have become one of the hottest issues in the technology sector, and methods of analyzing big data using AI approaches are now considered essential. This paper presents diverse paradigms to subjects which deal with diverse research areas, such as image segmentation, fingerprint matching, human tracking techniques, malware distribution networks, methods of intrusion detection, digital image watermarking, wireless sensor networks, probabilistic neural networks, query processing of encrypted data, the semantic web, decision-making, software engineering, and so on.

타겟 분해 기반 특징과 확률비 모델을 이용한 다중 주파수 편광 SAR 자료의 결정 수준 융합 (Decision Level Fusion of Multifrequency Polarimetric SAR Data Using Target Decomposition based Features and a Probabilistic Ratio Model)

  • 지광훈;박노욱
    • 대한원격탐사학회지
    • /
    • 제23권2호
    • /
    • pp.89-101
    • /
    • 2007
  • 이 논문에서는 토지 피복분류를 목적으로 C 밴드와 L 밴드 다중 편광 자료의 결정 수준 융합을 수행하여 융합 효과를 살펴보았다. 앞으로 이용이 가능해질 C 밴드 Radarsat-2 자료와 L 밴드 ALOS PALSAR 자료를 모사하기 위해 C 밴드와 L 밴드 NASA JPL AIRSAR 자료를 감독분류에 이용하였다. Target decomposition으로부터 얻어지는 산란 특성과 관련된 특징들을 입력으로 SVM을 분류 기법으로 적용한 후에, 사후확률을 확률비 모델의 틀안에서 융합하는 결정수준 융합을 수행하였다. 적용 결과, L 밴드가 C 밴드에 비해 피복 구분에 적절한 투과 심도를 나타내어 22% 정도 높은 분류 정확도를 나타내었지만, 결정수준 융합을 통해 개별 토지피복 항목의 구분력의 향상으로 인해 L 밴드 자료의 분류결과에 비해 10% 정도의 보다 향상된 분류 정확도를 얻을 수 있었다.

A Probabilistic Approach to Forecasting and Evaluating the Risk of Fishing Vessel Accidents in Korea

  • Kim, Dong-Jin
    • 해양환경안전학회지
    • /
    • 제24권3호
    • /
    • pp.302-310
    • /
    • 2018
  • Despite the accident rate for fishing vessels accounts for 70% of all maritime accidents, few studies on such accidents have been done and most of the them mainly focus on causes and mitigation policies to reduce that accident rate. Thus, this risk analysis on sea accidents is the first to be performed for the successful and efficient implementation of accident reducing measures. In risk analysis, risk is calculated based on the combination of frequency and the consequence of an accident, and is usually expressed as a single number. However, there exists uncertainty in the risk calculation process if one uses a limited number of data for analysis. Therefore, in the study we propose a probabilistic simulation method to forecast risk not as a single number, but in a range of possible risk values. For the capability of the proposed method, using the criteria with the ALARP region, we show the possible risk values spanning across the different risk regions, whereas the single risk value calculated from the existing method lies in one of the risk regions. Therefore, a decision maker could employ appropriate risk mitigation options to handle the risks lying in different regions. For this study, we used fishing vessel accident data from 1988 to 2016.

Risk-informed approach to the safety improvement of the reactor protection system of the AGN-201K research reactor

  • Ahmed, Ibrahim;Zio, Enrico;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.764-775
    • /
    • 2020
  • Periodic safety reviews (PSRs) are conducted on operating nuclear power plants (NPPs) and have been mandated also for research reactors in Korea, in response to the Fukushima accident. One safety review tool, the probabilistic safety assessment (PSA), aims to identify weaknesses in the design and operation of the research reactor, and to evaluate and compare possible safety improvements. However, the PSA for research reactors is difficult due to scarce data availability. An important element in the analysis of research reactors is the reactor protection system (RPS), with its functionality and importance. In this view, we consider that of the AGN-201K, a zero-power reactor without forced decay heat removal systems, to demonstrate a risk-informed safety improvement study. By incorporating risk- and safety-significance importance measures, and sensitivity and uncertainty analyses, the proposed method identifies critical components in the RPS reliability model, systematically proposes potential safety improvements and ranks them to assist in the decision-making process.