• Title/Summary/Keyword: probabilistic FSM

Search Result 2, Processing Time 0.016 seconds

AN INTERACTIVE BUILDING MODELING SYSTEM BASED ON THE LEGO CONCEPT

  • Chen, Sheng-Yi;Lin, Cong-Kai;Tai, Wen-Kai
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.128-135
    • /
    • 2009
  • In this paper, we proposed an interactive GUI (Graphical User Interface) system to model buildings with an editable script. Our system also provides probabilistic finite-state machine (PFSM) to define the relationships of sub-models with transformation matrices and transition probabilities for constructing new novel building models automatically. User can not only get various building models by PFSM but also adjust the probabilities of sub-models from PFSM to get desired building models. As shown in the results, the various and vivid building models can be constructed easily and quickly for non-expert users. Besides, user can also edit the script file which is provided by our system to modify the properties directly.

  • PDF

FSM State Assignment for Low Power Dissipation Based on Markov Chain Model (Markov 확률모델을 이용한 저전력 상태할당 알고리즘)

  • Kim, Jong-Su
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.2
    • /
    • pp.137-144
    • /
    • 2001
  • In this paper, a state assignment algorithm was proposed to reduce power consumption in control-flow oriented finite state machines. The Markov chain model is used to reduce the switching activities, which closely relate with dynamic power dissipation in VLSI circuits. Based on the Markov probabilistic description model of finite state machines, the hamming distance between the codes of neighbor states was minimized. To express the switching activities, the cost function, which also accounts for the structure of a machine, is used. The proposed state assignment algorithm is tested with Logic Synthesis Benchmarks, and reduced the cost up to 57.42% compared to the Lakshmikant's algorithm.

  • PDF