• Title/Summary/Keyword: prismatic correction

Search Result 8, Processing Time 0.02 seconds

A Case of Prismatic Correction for Cyclovertical Heterophoria (회선수직사위의 프리즘 교정 증례)

  • Yu, Dong-Sik;Cho, HyunGug;Moon, Byeong-Yeon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.2
    • /
    • pp.37-41
    • /
    • 2008
  • Purpose: The purpose of this case study is to prescribe a prismatic correction in uncommon case of cyclovertical heterophoria. Methods: The prescribed prism was used to balance the vertical vergence break values by the binocular vision evaluation such as phoria, vergence, accommodative function and the others. Results: Although asymptomatic lateral phoria was changed, the vertical prismatic correction improved the symptoms such as eyestrain, headaches, diplopia and others. And cyclophoria was disappeared by prismatic correction. Conclusions: The prismatic correction for this case was useful for alleviating symptoms of cyclovertical deviations.

  • PDF

Three Dimensional Correction Factors for the Added Mass in the Horizontal Vibration of Ships (선체수평진동(船體水平振動)에 있어서의 부가질량(附加質量) 3차원수정계수(次元修正係數))

  • K.C.,Kim;B.K.,Yoo
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.11 no.1
    • /
    • pp.9-16
    • /
    • 1974
  • To contribute towards more accurate estimation of the virtual inertia coefficient for the horizontal vibration of ships, three dimensional correction factor $J_H$ for the added mass of finitely long elliptic prismatic bars in horizontal vibration in a free surface of an ideal fluid are calculated. In the problem formulation Dr. T. Kumai's quasi-finite length concept[1,11,12] is employed. Now that, in Dr. Kumai's work[1] for the horizontal vibration the mathematical model was a circular cylinder, the principal aim of the authors' work is to investigate the influence of the beam-draft ratio B/T on $J_H$. The numerical results of this work are shown in Fig.3 graphically, from which we may recognize that the influence of B/T on $J_H$ is remarkable as much as that of the length-draft ratio L/T(refer to Fig.1 also). In Fig.3 the curves for B/T=2.00 are of those based on Dr. Kumai's result[1]. On the other hand, the experimental data obtained by Burril et al.[9] for the horizontal vibration of finitely long prismatic bars of various cross-section shapes are compared with the theoretical added mass coefficients defined by combination of the authors' $J_H$ from Fig.3 and two dimensional coefficients $C_H$ obtained by Lewis form approximation for the corresponding sections. They are in reasonable correspondence with each other as shown in Fig.2. Finally, considering that the longitudinal profile of full-form ship's hull is well resembled to that of an elliptic cylinder and that the influences of other factors such as the sectional area coefficient and the shape of section contour itself can be well merged in the two dimensional added mass coefficient, the authors recommend that the data given in Fig.3 may be successfully adopted for the three dimensional correction factor the added mass in the horizontal vibration of hull-form ships.

  • PDF

On the Virtual Inertia Coefficient of the Chine-type Ship in Vertical Vibration (Chine형선(型船)의 상하진동(上下振動)에 대(對)한 가상관성계수(假想慣性係數)에 관(關)하여)

  • K.C.,Kim;J.J.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 1972
  • To contribute towards more accurate estimation of the virtual coefficient for the vertical vibration of the chine-type ship, experimentally obtained three-dimensional correction factors, J, of added mass of prismatic beams having cross section shape of hypotrocoid characters, slightly concaved Lewis form and elliptic form are investigated in connection with the applicability of an approximate analytical calculation method compared to that proposed by T. Kumai[6] for the Lewis form cylinders, and synthetically in compared with the experimental works on various cross section shapes of the other type by L.C. Burril et al[8] and the analytical works on the ellipsoid of revolution by F.M. Lewis[1] and J.L. Taylor[2]. The experimental results show that the aforementioned analytical method gives, unlike that for the Lewis form cylinders, considerably larger J-values for the chine-type cylinders, and that the influence of the character of the cross section shape on J-values is not remarkable in practical sense. Finally, considering in synthesis the experimental results on prismatic beams, the Burril's works on palabolic plan form and elliptic plan form, and that the chine-type ship usually has a hull form of transom stern, it is fairly safe to say, at the present stage, that adoptation of the Taylor's J-values will not results in any large error in estimation of the virtual inertia coefficients of the chine-type ships.

  • PDF

A Study on the Five - hole Probe Calibration with Non-nulling Method (비영위법에 의한 5공 프로브의 교정에 관한 연구)

  • Jeong, Yang Beom;Sin, Yeong Ho;Park, Ho Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.116-116
    • /
    • 1996
  • This paper is concerned with a method for calibrating five-hole probes of both angle-tube and prismatic geometries to measure local total and static pressures and the magnitude and direction of the mean velocity vector. Descriptions of the calibration technique, the typical calibration data, and an accompanying discussion of the interpolation procedure are included. The flow properties are determined explicitly from measured probe pressures using calibration data. Flow angles are obtained within the deviation angle of 1.0 degree and dynamic pressures within 0.03 with 95% certainty. The variations in the calibration data due to Reynolds number are also discussed. For the range of Reynolds number employed, no effect was detected on the pitch, yaw and total pressure coefficients. However, the static pressure coefficient showed change to cause minor variations in the magnitude of the calculated velocity vector. To account for these variations, average correction factors need to be incorporated into the static pressure coefficient.

A Study on the Five-hole Probe Calibration with Non-nulling Method (비영위법에 의한 5공 프로브의 교정에 관한 연구)

  • 정양범;신영호;박호동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.48-56
    • /
    • 1996
  • This paper is concerned with a method for calibrating five-hole probes of both angle-tube and prismatic geometries to measure local total and static pressures and the magnitude and direction of the mean velocity vector. Descriptions of the calibration technique, the typical calibration data, and an accompanying discussion of the interpolation procedure are included. The flow properties are determined explicitly from measured probe pressures using calibration data. Flow angles are obtained within the deviation angle of 1.0 degree and dynamic pressures within 0.03 with 95% certainty. The variations in the calibration data due to Reynolds number are also discussed. For the range of Reynolds number employed, no effect was detected on the pitch, yaw abd total pressure coefficients. However, the static pressure coefficient showed change to cause minor variations in the magnitude of the calculated velocity vector. To account for these variations, average correction factors need to be incorporated into the static pressure coefficient.

  • PDF

Geometry-dependent MITC method for a 2-node iso-beam element

  • Lee, Phill-Seung;Noh, Hyuk-Chun;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.29 no.2
    • /
    • pp.203-221
    • /
    • 2008
  • In this paper, we present an idea of the geometry-dependent MITC method. The simple concept is exemplified to improve a 2-node iso-beam (isoparametric beam) finite element of varying section. We first study the behavior of a standard 2-node iso-beam finite element of prismatic section, which has been widely used with reduced integration (or the equivalent MITC method) in order to avoid shear locking. Based on analytical studies on cantilever beams of varying section, we propose the axial strain correction (ASC) scheme and the geometry-dependent tying (GDT) scheme for the 2-node iso-beam element. We numerically analyze varying section beam problems and present the improved performance by using both ASC and GDT schemes.

Theoretical Prediction of Vertical Motion of Planing Monohull in Regular Head Waves - Improvement of Zarnick's Nonlinear Strip Method (선수 규칙파 중 단동 활주선의 연직면 거동 추정 - Zarnick 비선형 스트립 방법의 개선)

  • Zhang, Yang;Yum, Deuk-Joon;Kim, Dong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.217-223
    • /
    • 2015
  • In order to predict the motions of a planing hull in waves, it is necessary to accurately estimate the force components acting on the hull such as the hydrodynamic force, buoyancy, and friction, as well as the wave exciting force. In particular, based on strip theory, hydrodynamic forces can be estimated by the summation of the forces acting on each cross-section of the hull. A non-linear strip method for planing hulls was mathematically developed by Zarnick, and his formula has been used to predict the vertical motions of prismatic planing hulls in regular waves. In this study, several improvements were added to Zarnick's formula to predict the vertical motions of warped planing hulls. Based on calm water model test results, the buoyancy force and moment correction coefficients were modified. Further improvements were made in the pile-up correction. Pile-up correction factors were changed according to variations of the deadrise angles using the results found in previous research. Using the same hull form, captive model tests were carried out in other recent research, and the results were compared with the present calculation results. The comparison showed reasonably good agreements between the model tests and present calculations.

Finite Element Vibration Analysis of Laminated Composite Folded Structures With a Channel Section using a High-order Shear deformation Plate Theory (고차전단변형 판이론을 이용한 채널단면을 갖는 복합적층 절판 구조물의 유한요소 진동 해석)

  • 유용민;장석윤;이상열
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.21-30
    • /
    • 2004
  • This study deals with free vibrations of laminated composite structures with a channel section using finite element method. In this paper, the mixed finite element method using Lagrangian and Hermite interpolation functions is adopted and a high-order plate theory is used to analyze laminated composite non-prismatic folded plates with a channel section more accurately for free vibration. The theory accounts for parabolic distribution of the transverse shear stress and requires no shear correction factors supposed in the first-order plate theory. An 32×32 matrix is assembled to transform the system element matrices from the local to global coordinates using a coordinate transformation matrix, in which an eighth drilling degree of freedom (DOF) per node is appended to the existing 7-DOF system. The results in this study are compared with those of available literatures for the conventional and first-order plate theory. Sample studies are carried out for various layup configurations and length-thickness ratio, and geometric shapes of plates. The significance of the high-order plate theory in analyzing complex composite structures with a channel section is enunciated in this paper.