• Title/Summary/Keyword: printing qualify

Search Result 4, Processing Time 0.022 seconds

Evaluation of Image Quality of Inkjet Printing on the Spun Polyester Fabrics

  • Park, Heung-Sup
    • Textile Coloration and Finishing
    • /
    • v.18 no.5 s.90
    • /
    • pp.61-71
    • /
    • 2006
  • This paper addresses the factors hindering the image quality of lines in inkjet printed on polyester fabric as printing media. Lines were printed onto different types of polyester fabrics in warp and filling directions. Line image quality including line width, edge blurriness, and edge raggedness was assessed. The effect of capillary wicking on line image quality of printed spun polyester fabric is discussed. The factors on the image quality include printing position(top of the yam or between the yarn), printing direction(warp or filling), yarn structures(filament or spun), thread size(yam or fiber), finishing, and ink properties(evaporation rate). More than 30% differences in image quality results were observed by changing the printing location on the spun polyester fabric. The best results of the image quality were obtained with the printed plain and spun polyester fabrics. The fiber sizes may affect capillary size; therefore, the image quality can be dissimilar. Types of finishing materials and inks greatly improve the line image quality on spun polyester fabrics.

The Effects of Ink Dispersion and Printing Conditions on Printed Mottle (잉크 분산 및 인쇄조건이 인쇄 모틀에 미치는 영향)

  • Ha, Young-Baeck;Lee, Yong-Kyu;Kim, Chang-Keun;Oh, Sung-Sang;Lim, Jong-Hag
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.4 s.117
    • /
    • pp.41-46
    • /
    • 2006
  • Printed mottle of coated paper is one of the most common but the most difficult problem in offset printing. Printed mottle is caused by an uneven penetration of Ink into the paper, binder migration, etc. For a high quality printing, development of new paper coating technologies to prevent print mottle is required. So for, the study of solving printed mottle is coated paper absorption controlled by base paper sizing and coating layer binder migration control. As a results, printed mottle has improved in coated paper. But printing is worked by interaction of printing ink, coated paper and printing pressure, then we need to understand of interaction printing work and coated paper. This research focused on a way of improving printed mottle by investigating various printing conditions such as ink dispersion, nip condition and amount of ink transfer using IGT printability tester.

Inkjet Printing on the Grain Leather: Evaluation of Line Image Quality on the Grain Leather

  • Park, Heung-Sup;Park, Soo-Min
    • Textile Coloration and Finishing
    • /
    • v.19 no.2
    • /
    • pp.24-31
    • /
    • 2007
  • This paper addresses factors of line image quality on grain leather printed via inkjet printer. Lines were printed onto coated leather media, and line width, edge blurriness, and edge raggedness were evaluated for line image quality. Various factors influenced to wetting and capillary wicking were studied and found out that wicking through capillary between fibers causes significant feathering on leather surface similar with pulp capillary in copy Paper. Polyurethane and acrylic resin coating resulted good image qualify by reducing capillary wicking. The mixture of polyurethane and acrylic resin applied on grain leather satisfied with both image quality and surface hand. $AllWrite^{TM}$ ink brought best results of image quality, comparing with $VeraPrint^{TM}$ ink and $JetWrite^{TM}$ ink.

Color Correction Using Back Propagation Neural Network in Film Scanner (필름 스캐너에서 역전파 신경회로망을 이용한 색 보정)

  • 홍승범;백중환
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.4
    • /
    • pp.15-22
    • /
    • 2003
  • A film scanner is one of the input devices for ac acquiring high resolution and high qualify of digital images from the existing optical film. Recently the demand of film scanners have risen for experts of image printing and editing fields. However, due to the nonlinear characteristic of light source and sensor, colors of the original film image do not correspond to the colors of the scanned image. Therefore color correction for the scanned digital image is essential in film scanner. In this paper, neural network method is applied for the color correction to CIE L/sup *//a/sup *//b/sup */ color model data converted from RGB color model data. Also a film scanner hardware with 12 bit color resolution for each R, G, B and 2400 dpi is implemented by using the TMS320C32 DSP chip and high resolution line sensor. An experimental result shows that the average color correction rate is 79.8%, which is an improvement of 43.5% than our previous method, polygonal regression method.

  • PDF