• Title/Summary/Keyword: printed mottle

Search Result 14, Processing Time 0.019 seconds

Ink setting and back trap mottle

  • Kim, Byeong-Soo;Park, Jong-Ywal;Bousfield, Douglas W.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2003.04a
    • /
    • pp.70-79
    • /
    • 2003
  • Paper coating can give smoothness surface and good printability to uncoated paper. Macro roughness of base paper would be decreasing its groove and grit in view of side. Nevertheless its improving effect for paper, some kind of problem is showing in the fine coated paper. Especially, back trap mottle is one of serious problems in printing with fine coated paper. Printers can not adjust conditions to overcome the problem. Also large amounts of paper can be rejected. There are many factors that influence back trap mottle. However it is not clear what the important parameters are in back trap mottle. Back trap mottle has some relationship with ink setting but good guidelines are not clear. Back trap mottle has been linked to non-uniform ink setting. We do not know how much variation in setting we can tolerate. Other mottle issues such as micro-picking and ink refusal are still common. This paper was prepared to identify correlation with ink setting and delta ink density obtained from experiment and then tried to find out some relationships with ink setting and back trap mottle. Basically fine calcium carbonate and ciay was used for main components and coarse calcium carbonate was mixed in two fine pigments to change its porosity and ink acceptance. Micro ink tack force at KRK printing tester was adapted to measure ink setting rate. KRK units were used for back trap mottle simulation and two printed samples were prepared to check delta ink density. Clay base coating has more fast ink setting time than calcium carbonate's though smoothness of clay was better than calcium carbonate. It could be explained by that clay has finer pore in its coating than calcium carbonate. DID(delta ink density) has shown a good correlation with ink setting time from micro ink tack. The total pore volume of coating layer did not match with ink setting and DID. From the results we might conclude coating that has fine pore size around 0.05 ${\mu}m$ can be exposed to high possibility of back trap mottle.

  • PDF

Print Mottle : Causes and Solutions from Paper Coating Industry Perspective

  • Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.5
    • /
    • pp.60-69
    • /
    • 2008
  • The principal reasons for applying a pigment coating to paper are to improve appearance and printability. The pigment coating provides a surface that is more uniform and more receptive to printing ink than are the uncoated fibers and, in turn, both facilitates the printing process and enhances the graphic reproduction. The improvement in print quality is readily apparent, especially in image areas or when multiple colors are involved. Although pigment coating of paper is to improve the printability, coated paper is not completely free from printing defects. Actually there are a number printing defects that are observed only with the coated papers. Among the printing defects that are commonly observed for coated papers, print mottle during multi-color offset printing is one of the most concerned defects, and it appears not only on solid tone area but also half dot print area. There are four main causes of print mottle ranging from printing inks, dampening solution, paper, and printing press or its operation. These indicates that almost every factors associated with lithographic printing can cause print mottle. Among these variation of paper quality influences most significantly on print mottle problems in multicolor offset printing, and this indicates that paper is most often to be blamed for its product deficiency as far as print mottle problems are concerned. Furthermore, most of the print mottle problems associated with paper is observed when coated papers are printed. Uncoated papers rarely show mottling problems. This indicates that print mottle is the most serious quality problems of coated paper products. Overcoming the print mottle is becoming more difficult because the operating speeds of coating and printing machines are increasing, coating weights are decreasing, and the demands on high-quality printing are increasing. Print mottle in offset printing is caused by (a) nonuniform back trap of ink caused by a nonuniform rate of ink drying, referred as "back trap mottle, and (b) nonuniform absorption of the dampening solution. Furthermore, both forms of print mottle have some relationship to the structure of the coated layer. The surest way of eliminating ink mottling is to eliminate unevenness in the base paper. Coating solutions, often easier to put into practice, should, however, be considered. In this paper the principal factors influencing print mottle of coated papers will be discussed. Especially the importance of base paper roughness, binder migration, even consolidation of coating layers, control of the drying rate, types of binders, etc. will be described.

Influence of the Variation of the Coating Color Composition and Characteristics of Inks on the Printability of the Coated Paper (도공액 조성변화와 잉크 물성변화가 인쇄품질에 미치는 영향)

  • Koo, Chul-Whoi;Ha, Young Baeck
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.5
    • /
    • pp.1-8
    • /
    • 2014
  • In this study, the influence of the physical properties of ink such as ink dispersity and emulsified amount on the printability of a coated paper was investigated with seven kinds of cyan inks. In addition, two kinds of coating formulations were tested to evaluate the effect of coating structure on the coated paper printability. It was found that the cyan ink with $2{\mu}m$ pigment size had the best dispersibility and hence the ink showed a best ink density on the two kinds of coated papers. When the emulsified ink A with IPA 20 wt% had a lower viscosity than emulsified ink B with IPA 10 wt%, the emulsified ink A showed relatively high value of the ink transfer rate in comparison with emulsified ink B. Despite the high value of ink transfer rate, the coated paper did not show a good printability because those inks with low viscosity due to a strong emulsification were easy to make print mottle on the coated paper.

Evaluation of Gloss Variation with a Novel Method

  • Sung, Yong-Joo;D. Steven Keller
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.2
    • /
    • pp.73-83
    • /
    • 2002
  • Gloss is very important optical property influencing the perceived quality of the paper surface as well as the surface after printing. Although the average gloss level of paper products or printed images is important to meet end use specifications, the occurrence of gloss mottle, or non-uniformity of gloss, is often of greater concern for meeting quality requirements, especially for the high gloss paper. Gloss variation originates from the irregularities of paper surface, especially surface roughness of paper. Roughness of paper can be divided into micro-roughness (under $1\mu m$ scale in variation) and macro-roughness (over $1\mu m$ scale in variation) depending on the scale of the irregularities. A clearer understanding of the gloss variation of paper can be achieved by separating the contributions of these two scales of roughness, and characterizing them independently. In order to do this, a novel gloss measuring method was introduced. This can detect local gloss with very high resolution. The effect of macro-roughness on gloss variation, which was identified by the measurable surface topography, was separated from the total gloss variation by using this method. The effect of micro-roughness was then estimated indirectly. The local gloss variations of various paper samples were then evaluated to demonstrate the utility of this approach.