• Title/Summary/Keyword: printed antenna

Search Result 207, Processing Time 0.034 seconds

Design of Super Wideband Dipole Antenna with 15:1 Impedance Bandwidth Ratio (15:1 임피던스 대역폭 비를 가지는 초광대역 다이폴 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.67-68
    • /
    • 2013
  • In this paper, a super wideband printed dipole antenna operating in the band of 1-15 GHz is studied. A semi-circular-shaped dipole element is used to obtain a super wideband characteristic. Optimal design parameters are obtained by analyzing the effects of the gap between the two arms of the semi-circular-shaped dipole and the radius of the semi-circle on the input reflection coefficient and gain characteristics. The optimized printed semi-circular-shaped dipole antenna is fabricated on an FR4 substrate with a dimension of $100mm{\times}100mm$. Experimental results show that the antenna has a desired super wideband characteristic with a frequency band of 1-15 GHz (bandwidth ration 15:1, 175%) for a VSWR < 2.

  • PDF

Design of the Elliptic Monopole Antenna for Ultra Wide-Band (Ultra Wide-Band용 타원형 모노폴 안테나 설계)

  • Cha, Sang-Jin;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.442-445
    • /
    • 2003
  • The use of a single UWB antenna which covers a wide range of frequencies is very desirable for future wireless communications system. In this paper, we propose a novel wide band printed elliptic monopole antenna for UWB(Ultra wide Band). Wideband planar monopole disc antenna have been recently studied. The proposed antenna can cover UWB frequencies from 3.5GHz to 12GHz. it is determined from 10dB return loss. The antenna consists of the printed elliptical monopole disc with microstrip-line feed. Elliptic disc of antenna and ground height operate important to matching. The results of measurement are almost similar to those of simulation.

  • PDF

Analysis of a T-Shaped UWB Printed Monopole Antenna Using Surface Currents (표면 전류 분포를 이용한 T자형 UWB 평면형 모노폴 안테나 해석)

  • Lee Dong-Hyun;Park Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.9 s.100
    • /
    • pp.883-892
    • /
    • 2005
  • We propose a T-shaped UWB printed monopole antenna and investigate the effect of the surface currents of the radiator and ground plane. The measured impedance bandwidth of the antenna covers the range of 3.1 to 11 GHz for a VSWR$\le$2, which satisfies the requirement of the UWB operation. From the analysis of the surface currents, the proposed antenna can be treated as two asymmetric dipoles with the included angle of 90 degrees which lie along z-direction symmetrically. It is observed that the effect of the surface currents on the radiation patterns is similar to that of the corresponding dipole. The length and width of the found plane correspond the radius and length of the dipole respectively. This approach is also valid to general printed monopole antennas. Finally, we included an antenna example having resonance at a lower frequency by tapering the edges of the ground plane and another example having a bandstop characteristic by inserting an inverted-U slot on the radiator, and explain those antennas using the surface currents.

PCB-Embedded Antenna for 80 GHz Chip-to-Chip Communication

  • Chung, Jae-Young;Hong, Wonbin;Baek, Kwang-Hyun;Lee, Young-Ju
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.1
    • /
    • pp.43-45
    • /
    • 2014
  • We propose a printed circuit board (PCB)-embedded antenna for millimeter-wave chip-to-chip communication. The antenna is 0.18 mm in height which is 1/20 wavelength at 80 GHz. In order to realize such a low profile, a zeroth-order resonator antenna with a periodic array of four unit cells is employed, and its geometry is optimized to cover an 8-GHz bandwidth from 76 to 84 GHz. With this;the antenna is capable of radiating in a direction parallel to the board length despite the short distance between the ground and the radiator. Simulation and measurement results show that the optimized design has low reflection coefficients and consistent radiation patterns throughout the target bandwidth.

Improved Impedance Matching of Dual-Frequency Microstrip Printed-Dipole Antenna with Conductor Back

  • Tangjitjesada, M.;Anantrasirichai, N.;Wakabayashi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1668-1671
    • /
    • 2003
  • A novel dual-frequency microstrip printed-dipole antenna operating at 5 GHz and 10 GHz is presented. This antenna is designed for wireless and mobile communication. The balance step coplanar strip is used to be a transmission line at the center of dipole with matching impedance at 50 ohm. Using the conductor strip align on the other side of antenna and adjust the width of step coplanar strip line to improved input impedance matching. By modification for matching impedance of dual frequency antenna are not affected to the radiation patterns. The Finite Difference Time Domain (FDTD) technique is applying to analyze the basic characteristic properties such as $S_{11}$ , input impedance , VSWR and radiation patterns. And these parameters are discussed. The analyze problem space are $51{\times}197{\times}175$ cells and cell dimension are ${\Delta}x=0.3\;mm$ and ${\Delta}y={\Delta}z=0.15\;mm$.

  • PDF

Printed Reflectarray Antenna Design for Parabolic Reflector Volume Reduction (파라볼릭 반사기 체적 축소용 프린트 리플렉트어레이 안테나 설계)

  • Moon, Sang-Man;Kim, In-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.140-146
    • /
    • 2013
  • In this study, we discuss about the printed reflectarray antenna design for parabolic reflector volume reduction. For this, we simulated and measured the phase characteristics of the unit array element of reflectarray antenna using waveguide simulator. As a results, the maximum phase variation is $298^{\circ}$ by simulation, the average phase variation is $309^{\circ}$ by measurement in 10GHz. And the printed Reflectarray antenna gain is 28.3dBi, 3dB beamwidth is E-plane $5.1^{\circ}$, H-plane $5.2^{\circ}$, sidelobe level is E-plane -11.4dB, H-plane -17.6dB.

The design of bent monopole antenna for 400MHz ISM band applications (400MHz ISM대역용 굴곡형 모노폴 안테나의 설계)

  • Lee, Young-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.2
    • /
    • pp.189-196
    • /
    • 2011
  • In order to subsitute for the normal mode helical wire antenna, bent monopole antenna combined with a helical structure is proposed as a kind of printed antenna. The antenna which can be operated at 418MHz has been simulated and designed by use of a commercial EM simulator Microwave Studio(MWS). It has been observed that the proposed antenna has good agreements between simulated results and measured results such as the return loss and the radiation pattern. The proposed antenna has been applied practically to the wireless remote controller operationg at 418MHz. It has been observed that the use of the proposed antenna result in similar antenna performance from view point of radiation power when compared with the use of the previous normal mode helical antenna.

A Subminiature Antenna for Bluetooth Applications (블루투스용 초소형 안테나)

  • Park, Myoung-Shil;Chun, Ren;Bang, Jai-Hoon;Ahn, Bierng-Chearl
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.4
    • /
    • pp.119-125
    • /
    • 2007
  • In this paper, a miniaturized PCB-integrated antenna is proposed for bluetooth applications. The proposed antenna is a modified form of the printed inverted F antenna where the size reduction is achieved by employing the meander strip for the resonant length part of the radiator. The antenna dimension is optimized using the commercial electromagnetic software MWSTM. The designed antenna is fabricated by the standard photo-etching technique and its performance is measured. The fabricated antenna shows a bandwidth of 125MHz centered at 2.45GHz and a gail of -0.23dBi. The size of the proposed antenna is $9.65mm{\times}5.95mm$ corresponding to the 55 percent of the area of the existing printed inverted F antenna.

  • PDF

Implementation of Broadband Printed Sleeve Monopole Antenna (광대역 프린티드 슬리브 모노폴 안테나의 구현)

  • Choe, Gwang-Je;Kang, Sang-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.245-250
    • /
    • 2014
  • This paper presents the broadband printed sleeve-monopole antenna implementing the sleeve monopole structure in the form of PCB. In the proposed antenna, the antenna performance was improved by the diameter variation of the radiator, the length variation of the sleeve, and the variation of the diameter of the sleeve conductor. HFSS simulator of ANSYS corp. was used in order to confirm the antenna parameter characteristic. According to the simulation results, the VSWR was less than 2 for the range of 2.12GHz~3.18GHz. The frequency bandwidth is 1.08GHz. The frequency range of the actual fabricated antenna was 2.0GHz~3.55GHz, the frequency bandwidth is 1.55GHz. The maximum gain was 1.64dBi. The proposed antenna was $56{\times}5{\times}1.6mm$ in size. The utilization possibility of the broadband printed sleeve-monopole antenna could be confirmed according to compare and analyze the simulation and measurement data.

An Orthogonally Polarized Negative Resonance CRLH Patch Antenna

  • Kahng, Sungtek;Jeon, Jinsu;Park, Taejoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.331-337
    • /
    • 2015
  • A novel fully-printed microstrip antenna with negative first resonance and dual polarization is proposed. The radiator is printed on the 1-layer substrate instead of multilayers. The -1st resonance results from a composite right- and left-handed(CRLH) structure that has a circumferentially interlocked gap capacitively coupling a patch with a shorted-ring. This compact antenna is provided with a dual-polarization capability by creating two orthogonal linear polarizations in one body with coaxial feeds. The design is carried out by doing full-wave EM field simulation which is compared with the measurement of the fabricated antenna prototype. The measured results give the gain of 5 dBi and the efficiency of 78% at the -1st resonance mode as the center frequency of a downlink channel of the bandwidth over 20 MHz with 29 dB polarization isolation for mobile communication.