• 제목/요약/키워드: primordial germ cells (PGCs)

검색결과 58건 처리시간 0.026초

PGC-Enriched miRNAs Control Germ Cell Development

  • Bhin, Jinhyuk;Jeong, Hoe-Su;Kim, Jong Soo;Shin, Jeong Oh;Hong, Ki Sung;Jung, Han-Sung;Kim, Changhoon;Hwang, Daehee;Kim, Kye-Seong
    • Molecules and Cells
    • /
    • 제38권10호
    • /
    • pp.895-903
    • /
    • 2015
  • Non-coding microRNAs (miRNAs) regulate the translation of target messenger RNAs (mRNAs) involved in the growth and development of a variety of cells, including primordial germ cells (PGCs) which play an essential role in germ cell development. However, the target mRNAs and the regulatory networks influenced by miRNAs in PGCs remain unclear. Here, we demonstrate a novel miRNAs control PGC development through targeting mRNAs involved in various cellular pathways. We reveal the PGC-enriched expression patterns of nine miRNAs, including miR-10b, -18a, -93, -106b, -126-3p, -127, -181a, -181b, and -301, using miRNA expression analysis along with mRNA microarray analysis in PGCs, embryonic gonads, and postnatal testes. These miRNAs are highly expressed in PGCs, as demonstrated by Northern blotting, miRNA in situ hybridization assay, and miRNA qPCR analysis. This integrative study utilizing mRNA microarray analysis and miRNA target prediction demonstrates the regulatory networks through which these miRNAs regulate their potential target genes during PGC development. The elucidated networks of miRNAs disclose a coordinated molecular mechanism by which these miRNAs regulate distinct cellular pathways in PGCs that determine germ cell development.

체외 돼지 원시 생식세포의 Apoptosis 특성 규명 (Characterization of Apoptosis in Porcine Primordial Germ Cells In Vitro)

  • Lee, C.K.
    • 한국가축번식학회지
    • /
    • 제24권4호
    • /
    • pp.385-394
    • /
    • 2000
  • 돼지 원시 생식세포를 미성숙 성선에서 분리하고 체외 배양하여 EG 세포를 얻으려 할 경우 , 상당수의 세포들이 배양초기에 손실을 입게 된다. 이러한 돼지 원시 생식세포의 체외 손실 원인을 규명하고자, 미성숙 성선에서 분리된 세포를 부유 배양을 하고 FACS (fluorescent activated cell sorter)를 이용한 DNA 절편 분석법으로 apoptosis를 관찰한 결과 체외 배양된 처리구에서 apoptosis가 증가되었다. 그러나, 미성숙 성선에서 분리된 세포는 원시 생식세포와 체세포가 혼합된 세포들이므로, apoptosis가 일어난 돼지 원시 생식세포를 다른 체세포들로부터 구분하기 위하여 0 시간부터 24 시간까지 배양된 세포를 대상으로 정량 TUNEL 분석을 시행하였다. 이 결과, alkaline phosphatase 활성과 in situ TUNEL 분석을 통하여 apoptosls 가 일어난 돼지 원시 생식세포가 시간이 경과함에 따라 증가되었다. 이러한 결과들을 종합하여 볼 때 apoptosis가 돼지 원시 생식세포의 체외 손실의 원인 중 하나임을 규명하였다.

  • PDF

외부유전자의 전이에 의한 배아세포와 트란스젠닉 가금 생산의 가능성 (Possible Production of Transgenic Chicken by Transferring Foreign Genes and Germ Cells)

  • Fujihara, N.
    • 한국가금학회지
    • /
    • 제26권2호
    • /
    • pp.119-129
    • /
    • 1999
  • In recent years, numerous researches have been carried out in author's laboratory to develop several kinds of methods for producing transgened chicken, leaving a lot of new findings. Some of them are very useful to search for new approaches necessary to improve the efficiency of hatchability and the survival rate of developing trasgened embryos. The results obtained hitherto might be summarized as follows: (1) foreign gene(Lac Z/ Miw Z) introduced into blastodermal cells of developing embryos was successfully transferred to embryos, leading to the production of primordial germ cells(PGCs) carrying foreign DNA. However, hatched hickens failed to show the incorporation of introduced gene into the gonads. (2) When foreign gene was introduced into germinal crescent region (GCR), the gene was also efficiently incorporated into germ cells, resulting in the production of transgened chickens(offspring) which produced fruther offspring having foreign gene in the gonads. In this case, 2nd and 3rd generations of chickens were obtained through the reproduction of transgened birds. (3) In another way, the gene was injected into blood vessels of developing embryos at stage 13∼15, creating PGCs having foreign gene, and produced some transgened chickens. In this work, the PGCs were transfered between embryos, resulting in the production of transgenic chickens. (4) in these experiments, PGCs were effectively employed for producing transgenic birds, developing some kinds of chimeric chickens from homo- or hetero-sexual transfer of the PGCs from embryos. This means that the gonads from donor PGCs developed in some degree to the stage of hatching. However, these gonads showed slightly abnormal tissues similar to ovotestis like organs through histological examination. (5) Avian Leukosis Virus(ALV) induced B cell line(DT40) successfully carried foreign genes into chicken embryos, suggesting the possibility of the cells as a vector in this field of study in the future. (6) Inter-embryonic transfer of the PGCs also gave us some.

  • PDF

Ten-eleven translocation 1 mediating DNA demethylation regulates the proliferation of chicken primordial germ cells through the activation of Wnt4/β-catenin signaling pathway

  • Yinglin Lu;Ming Li;Heng Cao;Jing Zhou;Fan Li;Debing Yu;Minli Yu
    • Animal Bioscience
    • /
    • 제37권3호
    • /
    • pp.471-480
    • /
    • 2024
  • Objective: The objective of this study was to investigate the regulation relationship of Ten-eleven translocation 1 (Tet1) in DNA demethylation and the proliferation of primordial germ cells (PGCs) in chickens. Methods: siRNA targeting Tet1 was used to transiently knockdown the expression of Tet1 in chicken PGCs, and the genomic DNA methylation status was measured. The proliferation of chicken PGCs was detected by flow cytometry analysis and cell counting kit-8 assay when activation or inhibition of Wnt4/β-catenin signaling pathway. And the level of DNA methylation and hisotne methylation was also tested. Results: Results revealed that knockdown of Tet1 inhibited the proliferation of chicken PGCs and downregulated the mRNA expression of Cyclin D1 and cyclin-dependent kinase 6 (CDK6), as well as pluripotency-associated genes (Nanog, PouV, and Sox2). Flow cytometry analysis confirmed that the population of PGCs in Tet1 knockdown group displayed a significant decrease in the proportion of S and G2 phase cells, which meant that there were less PGCs entered the mitosis process than that of control. Furthermore, Tet1 knockdown delayed the entrance to G1/S phase and this inhibition was rescued by treated with BIO. Consistent with these findings, Wnt/β-catenin signaling was inactivated in Tet1 knockdown PGCs, leading to aberrant proliferation. Further analysis showed that the methylation of the whole genome increased significantly after Tet1 downregulation, while hydroxyl-methylation obviously declined. Meanwhile, the level of H3K27me3 was upregulated and H3K9me2 was downregulated in Tet1 knockdown PGCs, which was achieved by regulating Wnt/β-catenin signaling pathway. Conclusion: These results suggested that the self-renewal of chicken PGCs and the maintenance of their characteristics were regulated by Tet1 mediating DNA demethylation through the activation of Wnt4/β-catenin signaling pathway.

Developmental Genetic Analysis of Avian Primordial Germ Cells and the Application to Poultry Biotechnology

  • Kagami, H.
    • 한국가금학회지
    • /
    • 제28권2호
    • /
    • pp.135-142
    • /
    • 2001
  • A novel sterategy has been established to determine the origin of the Primordial Germ Cells (PGCs) in avian embryos directly and the developmental fate of the PGCs for the application to Poultry biotechnology. Cells were removed from 1) the centre of area pellucida, 2) the outer of area pellucida and 3) the area opaca of the stage X blastoderm (Eyal-Giladi & Kochav, 1976). When the cells were removed from the centre of area pellucida, the mean number of circulating PGCs in blood was significantly decreased in the embryo at stage 15 (Hamburger & Hamilton, 1951) as compared to intact embryos. When the cells were replenished with donor cells, no reduction in the PGCs number was observed. The removal of cells at the outer of area pellucida or at the area opaca had no effect on the number of PGCs. In case, another set of the manipulated embryos were cultured ex vivo to the hatching and reared to the sexual maturity, the absence of germ cells and degeneration of seminiferous tubules was observed in resulting chickens derived from the blastoderm in which the cells were removed from the centre of the area pellucida. It was concluded that the avian Primordial Germ cells are originated at the center of area pellucida. Developmental ability of the cells to differentiate into somatic cells and germ cells in chimeras were analyzed. Somatic chimerism was detected as black feather attributed from donor cells. Molecular identification by use of female - specific DNA was performed. It was confirmed that the donor cells could be differentiated into chimeric body and erythrocytes. Donor cells retained the ability to differentiate into germline in chimeric gonads. More than 70% of the generated chimeras transmitted donor derived gametes to their offspring indicating that the cells at the center of area pellucida had the high ability to differentiate into germ cells. A molecular technique to identify germline chimerism has been developed by use of gene scan analysis. Strain specific DNA fragments were amplified by the method. It would be greatly contributed for the detection of germline chimerism. Mixed- sex chimeras which contained both male and female cells were produced to investigate the developmental fate of male and female cells in ovary and testes. The sex combinations of donor and recipient of the resulting chimeras were following 4 pairs; (1) chimeras (ZZ/ZZ) produced by a male donor (ZZ) and a male recipient (ZZ), (2) chimeras (ZW/ZW) produced by a female donor (ZW) and a female recipient (ZW), (3) chimeras (ZZ/ZW) Produce by a male donor (ZZ) and a female recipient (ZW), (4) chimeras (ZW/ZZ) produced by a female donor (ZW) and a male recipient (ZZ). It was found that genetically male avian germ cells could differentiate into functional ova and that genetically female germ cells can differentiate into functional spermatozoa in the gonad of the mixed- sex chimeras. An ability for introduction of exogenous DNA into the PGCs from stage X blastoderms were analyzed. Two reporter genes, SV-$\beta$gal and RSV-GFP, were introduced into the PGCs. Expression of bacterial/gal was improved by complexing DNA with liposome detectedcc in 75% of embryos at 3 days embryos. At the embryos incubated for 1 day, expression of the GFP was observed all the embryos. At day 3 of incubation, GFP was detected in about 70% of the manipulated embryos. In case of GFP, expression of the transgene was detected in 30 %e of the manipulated embryos. These results suggested that the cells is one of the most promising vectors for transgenesis. The established strategy should be very powerfull for application to poultry biotechnology.

  • PDF

Examination Of The Migratory Ability Of Primordial Germ Cells From Embryonic Gonads At Different Developmental Stages In Quail

  • Kim, Duk-Kyung;Park, Tae ub;Lee, Yong-Mok;Kim, Mi-Ah;Kim, Gwi-Sook;Kim, Ki-Dong;Han, Jae-Yong
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2000년도 제17차 정기총회 및 학술발표
    • /
    • pp.75-77
    • /
    • 2000
  • Retaining migratory activity is a prerequisite for the manipulation and use of PGCs. This study was conducted to examine whether migratory activity is retained in the primordial germ cells(PGCs) from gonads at the later embryonic developmental stage. In the present study, gonads were dissected from 5-, 6- and 10-day-old quail embryos and treated with trypsin-EDTA for the degradation of gonadal tissue. Gonadal PGCs (gPGCs) were purified by Ficoll density gradient centrifugation and labeled with PKH26 fluorescent dye. The PKH26-labeled gPGCs were microinjected into the blood vessels of recipient quail embryo. After further incubation of 3 days, the manipulated recipients were embedded in paraffin and sectioned. The gPGCs were detected by their fluorescence under the fluorescent microscopy and the confocal laser microscopy. As a result, 10-day-old quail gPGCs as well as 5-and 6-day-old gPGCs, could migrate to recipient embryonic gonads and settle down. These results suggest that the 10-day-old gPGCs have the properties of circulating PGCs at early stage. Therefore the PGCs from 10-day old embryonic gonads can be used for the tools of genetic manipulation.

  • PDF

Effects of Pretense Inhibitors and Antioxidants on In Vitro Survival of Porcine Primordial Germ Cells

  • Lee, Chang-Kyu;Jorge A. Piedrahita
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2001년도 발생공학 국제심포지움 및 학술대회 발표자료집
    • /
    • pp.47.1-47
    • /
    • 2001
  • One of the problems associated with in vitro culture of primordial gern cells (PGCs) is the large loss of cells during the initial period of culture. This study characterized the initial loss and determined the effectiveness of two classes of apoptosis inhibitors, protease inhibitors and antioxidants, on the ability of the porcine PGCs to survive in culture. Results from electron microscopic analysis and in situ DNA fragmentation assay indicated that porcine PGCs rapidly undergo apoptosis when placed in culture. Additionally, \ulcorner2-macroglobulin, a protease inhibitor and cytokine carrier, and N-acetylcysteine, an antioxidant, increased the survival of PGCs in vitro. While other protease inhibitors tested did not affect survival of PGCs, all antioxidants tested improved survival of PGCs (p<0.05). Further results indicated that the beneficial effect of the antioxidants was critical only during the initial period of culture. Finally, it was determined that in short-term culture, in the absence of feeder layer, antioxidants could partially replace the effect(s) of growth factors and reduce apoptosis. Collectively, these results indicate that the addition of \ulcorner2-macroglobulin and antioxidatns can increase the number of PGCs in vitro by suppressing apoptosis.

  • PDF

The capabilities of migration and differentiation of female primordial germ cells after transferring to male embryos

  • Lee, Young-Mok;Kim, Mi-Ah;Shin, Sang-Su;Park, Tas-Sub;Park, Hyun-Jeong;Han, Jae-Yong
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2001년도 제18차 정기총회 및 학술발표 PROCEEDINGS
    • /
    • pp.74-76
    • /
    • 2001
  • 조류의 경우에는 포유류와 달리 수정란의 성별이 암컷에 의하여 결정된다. 수컷은 동일접합체로 ZZ 염색체를, 암컷의 경우에는 이형접합체로 Z W 염색체를 갖기 때문이다. 현재까지 조류에 있어서 염색체 분석 등에 의한 암 ·수의 세포 유전학적인 특성은 많은 연구가 되어 있으나, 배발달 초기의 원시생식세포 등에 대해서는 많은 연구가 진행되어 있지 않다. 따라서 본 연구는 암컷의 원시생식세포를 분리하여 숫컷의 초기 배자에 주입함으로써 수용체 배자의 원시생식기내로 이동이 가능한지를 검증하였으며, 또한 수컷의 원시생식기내로의 이동 후 정상적으로 분열 및 분화가 가능한지를 초기 배발달 과정에서 확인하였다. 본 연구 결과, 암컷의 원시생식세포는 수컷의 수용체 배자에 재주입시 정상적인 원시생식기내로의 이동 능력을 보여주었으며, 분열 ·분화함을 알 수있었다.

  • PDF

닭 생식반월의 Busulfan 가온 주입방법에 의한 원시생식세포 제거 효과 (Depletion Effects of Chick Germinal Crescent's Primordial Germ Cells by Heat Activated Busulfan Injection)

  • 정동기
    • 한국발생생물학회지:발생과생식
    • /
    • 제11권3호
    • /
    • pp.219-226
    • /
    • 2007
  • 본 연구는 생식선 키메라 생산효율을 높이기 위한 방법으로 busulfan 가온 주입법을 이용하여 효과적인 원시생식 세포의 이동능력을 검증하였다. 효율적인 생식선 키메라 닭 생산에서 중요한 요건 중 하나인 공여체 원시생식세포의 생존율을 측정한 실험에서는 시간이 지남에 따라 생존율에 변화를 보였으나, 평균 $70{\sim}80%$을 유지하고 있었으며, busulfan 처리 유무에 따른 공여체 원시생식세포 이동능력은 형광염색 후 주입한 실험에서 대조구가 4.8%인 반면 실험구는 23.5%을 나타냈다. 이식전 원시생식세포 배양 조건에 따라, 96시간과 118시간 배양 처리구에서 높은 이동능력을 보여 주었다. 원시생식세포의 형태학적, 생리학적 특징을 응용한 이식방법은 매우 효과적일 것이다. 그리고 본 연구에서는 생식반월의 발달단계 별 busulfan 처리 효과는 48시간이 가장 높은 53.4%였으며, 그러나 본 연구에서는 생식반월 유래 원시생식세포 이식은 48시간 이전, 혈관계가 발달하기 직전으로 가장 높은 효율을 보였다. 결론적으로 생식선 키메라 방법을 통한 형질전환 닭 생산 연구의 가장 큰 관건은 최대한 많은 수의 공여체 원시생식세포가 수용체의 저해작용 없이 안정적으로 수용체 gonad로 이동하여 분화하는 것으로, 본 연구 결과를 토대로 개선된 방법을 이용하면 높은 효율의 생식선 키메라 닭이 생산될 것으로 사료된다.

  • PDF

Germ Cell Transplantation in Fish: Can Salmon Make Trout\ulcorner

  • Yoshizaki, Goro;Takeuchi, Yutaka;Kobayashi, Terumasa;Takeuchi, Toshio
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.22-23
    • /
    • 2003
  • Primordial germ cell (PGC) is the progenitor cell of the germ cell lineage and eventually give rise to gametes that are responsible for creating individual organisms via a fertilization process. This means that PGC is a unique cell that can be converted into individual fish. This advantage of PGCs would make it possible to develop various applications in the field of fish bioengineering. First, PGCs may make it easier to preserve the genetic resources of fish. Cryopreservation of fish eggs or embryos has not been successfully achieved so far. Therefore, the only possible method to preserve genetic resources of fishes is to raise fish as live individuals. If PGCs isolated from various fishes could be cryopresewed, these cells could be converted into live fishes via germ-line chimera production. This is particularly useful for preserving genetic materials of endangered species. Even if the species of interest were to become extinct, it could be recovered by the transplantation of cryopreserved PGCs into the embryos of a closely related species. Another application of this technology is in what could be termed "surrogate broodstock technology". (중략)

  • PDF